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A Taxonomy Development Process

A.1 Data Collection
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Figure A1. Literature search process overview

Survey scope and paper inclusion criteria: The focus of this survey is on empirical
human-subject studies of humanAI decision making, where the goal is to evaluate,
understand and/ or improve human performance and experience for a decision making
task, rather than to improve the model. As such, we specify the following inclusion and
exclusion criteria:

– The paper must include evaluative human-subject studies. We thus exclude purely
formative studies that focus on exploring user needs to inform design of AI systems,
often qualitatively.

– The paper must target a decision making task, thus we exclude tasks of other
purposes (e.g., debugging and other forms of improving the model, co-creation,
gaming).

– The task must involve and focus on studying human decision makers, thus we
exclude papers on AI automation or other AI stakeholders (model developers, ML
practitioners). However, we do not limit our studies to those that implement complete
decision making processes, but also include studies that claim to evaluate some
aspects of decision makers’ perceptions, such as their understanding, satisfaction,
and perceived fairness of the AI.

A.2 Iterative Process of Taxonomy Development

The first iteration involved a conceptual-to-empirical approach, where literature reviews
provided a starting point for the initial characteristics and dimensions. In the second iter-
ation, we chose an empirical-to-conceptual approach to capture the nuanced differences
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between each experiment. To do so, we randomly selected 15 out of the 55 resulting
experiments (cf. data collection) to refine the taxonomy further. After the second it-
eration, we noticed that the modified taxonomy had become in-depth but descriptive.
To counteract the issue, the third iteration again included a conceptual-to-empirical ap-
proach. We aggregated the present characteristics and dimensions by consulting existing
frameworks and literature reviews from related fields. In the final iteration, we adopted
the procedure of the second iteration but with a random selection of 20 experimental
studies. This allowed us to refine and aggregate our dimensions and characteristics even
further. Within this iteration, we met our defined ending conditions. Table A1 presents
an overview of each iteration conducted during the development of our taxonomy.

Table A1. Overview of the four iterations

Iteration Approach Summary #M #D #C Article
1 Conceptual-to-

Empirical
Literature reviews and articles
with a holistic perspective pro-
vided foundational characteris-
tics and dimensions, allowing us
to establish a preliminary taxon-
omy for the research area.

4 35 122 (32; 24; 33; 23; 42; 10;
53)

2 Empirical-to-
Conceptual

Classification of experiments
highlighted subtle differences,
facilitating the evaluation of
quality and updating the charac-
teristics and dimensions.

4 74 216 (2; 3; 6; 7; 11; 13; 16;
18; 21; 25; 43; 45; 57;
60; 66)

3 Conceptual-to-
Empirical

Consultation of existing frame-
works and literature reviews
from related fields enhanced and
consolidated the current dimen-
sions and characteristics.

4 28 87 (26; 40; 36; 8; 5; 20; 63;
39)

4 Empirical-to-
Conceptual

Classification of additional ex-
periments elucidated the dimen-
sions and characteristics, final-
izing the taxonomy and fulfill-
ing the established ending con-
ditions.

4 18 56 (1; 4; 12; 14; 19; 22; 27;
35; 37; 38; 44; 48; 52;
54; 55; 56; 58; 59; 61;
68)

#M=Number of Metacharacteristics; #D=Number of Dimensions; #C=Number of Characteristics



A.3 Literature Classification

Table A2. Literature Collection for the Metacharacteristic Collaboration

Dimension Characteristic Article

Mode
Human-AI (1; 3; 4; 7; 9; 10; 11; 12; 13; 14; 16; 17; 19; 21; 22; 25;

27; 28; 30; 29; 31; 34; 35; 37; 38; 41; 43; 44; 45; 46; 47;
48; 49; 50; 51; 53; 52; 54; 55; 56; 57; 58; 59; 60; 61; 62;
64; 65; 68; 67; 66)

Human-Multi-AI (2)

Multi-Human-AI (6; 15; 18)

Interface
Wizard-of-Oz (1; 7; 9; 15; 18; 38; 43; 54; 56)

Fully Functional AI (2; 3; 4; 6; 10; 11; 12; 13; 14; 16; 17; 19; 21; 22; 25; 27;
28; 30; 29; 31; 34; 35; 37; 41; 44; 45; 46; 47; 48; 49; 50;
51; 53; 52; 55; 57; 58; 59; 60; 61; 62; 64; 65; 68; 67; 66)

Advice Count
Single (1; 3; 4; 7; 9; 10; 11; 12; 13; 14; 16; 17; 19; 21; 22; 25;

27; 28; 30; 29; 31; 34; 35; 37; 38; 41; 43; 44; 46; 47; 48;
49; 50; 51; 53; 54; 56; 57; 58; 59; 60; 61; 64; 65; 68; 67;
66)

Multiple (2; 6; 15; 18; 45; 52; 55; 62)

Advice Timing
Before Manifestation (1; 6; 7; 9; 15; 16; 17; 18; 19; 21; 25; 28; 30; 31; 35; 43;

44; 45; 46; 49; 52; 55; 56; 58; 61; 62)

After Manifestation (2; 3; 4; 7; 11; 12; 13; 14; 22; 27; 29; 34; 37; 38; 41; 47;
48; 50; 51; 53; 54; 57; 59; 60; 64; 65; 68; 67; 66)

During Manifestation (10)

Ecological Context

Business (4; 6; 9; 11; 12; 14; 16; 18; 30; 34; 46; 48; 51; 60)

Public (1; 15; 17; 27; 28; 47; 49; 52; 55; 59; 62; 65)

Private (7; 21; 31; 35; 38; 41; 45; 50; 57; 64; 68)

Healthcare (19; 25; 37; 43; 44; 61)

Gaming (2; 3; 13; 66)

Hypothetical (10; 22; 29; 53; 54; 56; 58; 67)



Table A3. Literature Collection for the Metacharacteristic Agent

Dimension Characteristic Article

Human Characteristics
AI Literacy (11; 12; 35; 43)

Domain Knowledge (2; 3; 13; 25; 27; 28; 31; 35; 37; 43; 49; 55; 59;
60; 61; 62; 68; 67; 66)

None (1; 4; 6; 7; 9; 10; 11; 14; 15; 16; 17; 18; 19; 21;
22; 30; 29; 34; 38; 41; 44; 45; 46; 47; 48; 50;
51; 53; 52; 54; 56; 57; 58; 64; 65)

Human Choice of Advice
Adjustable (6; 7; 16; 18; 19; 28; 45; 47; 52)

Predefined (1; 2; 3; 4; 7; 9; 10; 11; 12; 13; 14; 15; 17; 21;
22; 25; 27; 30; 29; 31; 34; 35; 37; 38; 41; 43;
44; 46; 48; 49; 50; 51; 53; 54; 55; 56; 57; 58;
59; 60; 61; 62; 64; 65; 68; 67; 66)

AI Embodiment
Physical Robot (19)

Virtual Agent or Bot (3; 15; 18; 21; 46; 53; 52; 54)

Embedded inside Tool (1; 2; 4; 6; 7; 9; 10; 11; 12; 13; 14; 16; 17; 21;
22; 25; 27; 28; 30; 29; 31; 34; 35; 37; 38; 41;
43; 44; 45; 47; 48; 49; 50; 51; 55; 56; 57; 58;
59; 60; 61; 62; 64; 65; 68; 67; 66)

AI Agency
Performative (11; 47; 60; 68)

Advisory (1; 2; 3; 4; 6; 7; 9; 10; 11; 12; 13; 14; 15; 16; 17;
18; 19; 21; 22; 25; 27; 28; 30; 29; 31; 34; 35; 37;
38; 41; 43; 44; 45; 46; 48; 49; 50; 51; 53; 52; 54;
55; 56; 57; 58; 59; 60; 61; 62; 64; 65; 68; 67; 66)

AI Response Mode
Judgment (4; 11; 12; 14; 15; 19; 27; 34; 60; 61; 65)

Choice (1; 2; 3; 6; 7; 9; 10; 13; 16; 17; 18; 21; 22; 25;
28; 30; 29; 31; 35; 37; 38; 41; 43; 44; 45; 46;
47; 48; 49; 50; 51; 53; 52; 54; 55; 56; 57; 58;
59; 62; 64; 68; 67; 66)



Table A4. Literature Collection for the Metacharacteristic Task

Dimension Characteristic Article

Input

Image (2; 3; 7; 9; 13; 16; 17; 21; 30; 35; 37; 38; 41; 46; 47; 50; 55; 58;
64; 67; 66)

Text (1; 4; 6; 11; 12; 14; 15; 16; 18; 21; 22; 27; 28; 30; 29; 31; 34;
38; 43; 44; 46; 48; 49; 50; 51; 53; 52; 54; 55; 56; 57; 59; 60; 61;
62; 64; 65; 68)

Video (25; 45)

Audio (19; 54)

3D Model (10; 47)

Solution Nature
Subjective (1; 6; 7; 28; 29; 38; 41; 46; 49; 50; 54; 55; 64)

Objective (2; 3; 4; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 21; 22; 25; 27;
30; 31; 34; 35; 37; 43; 44; 45; 47; 48; 51; 53; 52; 56; 57; 58; 59;
60; 61; 62; 65; 68; 67; 66)

Importance
Low-Stake (2; 3; 4; 6; 7; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 21; 22;

30; 31; 34; 38; 41; 45; 46; 47; 48; 49; 50; 51; 53; 52; 54; 56; 57;
58; 59; 60; 62; 64; 65; 68; 67; 66)

High-Stake (1; 25; 27; 28; 29; 35; 37; 43; 44; 55; 61)



Table A5. Literature Collection for the Metacharacteristic Precondition

Dimension Characteristic Article

Manipulation

Performance (9; 10; 11; 12; 13; 14; 15; 21; 25; 27; 29;
31; 38; 48; 50; 53; 52; 62; 64; 68; 66)

Transparency (2; 3; 7; 9; 11; 22; 25; 27; 35; 38; 41;
43; 45; 46; 48; 50; 51; 53; 52; 55; 57;
58; 59; 60; 61; 64; 65; 68; 67)

Interaction (1; 4; 6; 15; 16; 18; 19; 25; 28; 31; 34;
37; 56; 65; 68; 67; 66)

Representation (2; 4; 18; 21; 27; 30; 37; 44; 46; 54; 62;
67)

Individuality (1; 3; 4; 11; 12; 17; 22; 28; 29; 35; 38;
44; 45; 55; 56; 59; 60)

Task (7; 10; 28; 47; 49; 58; 64)

Setup
Single Trial (1; 15; 18; 19; 29; 31; 46; 65)

Multiple Trials (2; 3; 4; 6; 7; 9; 10; 11; 12; 13; 14; 16;
17; 21; 22; 25; 27; 28; 30; 34; 35; 37;
38; 41; 43; 44; 45; 47; 48; 49; 50; 51;
53; 52; 54; 55; 56; 57; 58; 59; 60; 61;
62; 64; 68; 67; 66)

Feedback
Not Given (1; 2; 6; 7; 9; 10; 11; 15; 16; 17; 18; 19;

21; 22; 25; 28; 29; 31; 35; 37; 38; 43;
44; 45; 46; 47; 48; 49; 51; 53; 52; 54;
55; 57; 58; 59; 60; 61; 62; 65)

Given-Immediate (12; 13; 14; 22; 25; 27; 34; 41; 47; 56;
68; 67; 66)

Given-Delayed (3; 4; 11; 12; 30; 38; 50; 64)

User-AI Onboarding
None (3; 6; 10; 11; 13; 14; 15; 17; 18; 19; 21;

22; 25; 29; 31; 38; 43; 48; 53; 52; 55;
56; 57; 60; 61; 62; 65; 67)

Instruction (1; 2; 9; 16; 27; 28; 30; 35; 41; 44; 45;
46; 47; 49; 50; 51; 59; 64)

Pre-Experimental Usage (4; 7; 12; 16; 34; 37; 41; 45; 47; 49; 51;
54; 58; 68; 66)

Reward Structure

Monetary Performance (2; 3; 4; 6; 7; 10; 11; 13; 22; 30; 37; 38;
41; 49; 50; 51; 52; 58; 59; 64; 65; 68;
67; 66)

Monetary Non-Performance (9; 12; 14; 21; 27; 29; 35; 46; 48; 60)

None (1; 16; 18; 19; 28; 31; 43; 44; 45; 47;
54; 55; 56; 57; 61; 62)

Non-Monetary Performance (25; 34)

Non-Monetary Non-Performance (15; 17; 53)



B Descriptive Pattern Analysis

Table B1. Descriptive frequency analysis of dimensions (1).

MC Dimension Characteristic Absolute Relative

Collaboration

Mode
Human-AI 51 0,93

Human-Multi-AI 1 0,02

Multi-Human-AI 3 0,05

Interface
Wizard-of-Oz 9 0,16

Fully Functional AI 46 0,84

Advice Count
Single 47 0,85

Multiple 8 0,15

Advice Timing
Before Manifestation 26 0,47

After Manifestation 29 0,53

During Manifestation 1 0,02

Ecological Context

Business 14 0,25

Public 12 0,22

Private 11 0,2

Healthcare 6 0,11

Gaming 4 0,07

Hypothetical 8 0,15

Agent

Human Characteristics
AI Literacy 4 0,07

Domain Knowledge 19 0,35

None 35 0,64

Human Choice of Advice
Adjustable 9 0,16

Predefined 47 0,85

AI Embodiment
Physical Robot 1 0,02

Virtual Agent or Bot 8 0,15

Embedded inside Tool 47 0,85

AI Agency
Performative 4 0,07

Advisory 54 0,98

AI Response Mode
Judgment 11 0,2

Choice 44 0,8



Table B2. Descriptive frequency analysis of dimensions (2).

MC Dimension Characteristic Absolute Relative

Task

Input

Image 21 0,38

Text 38 0,69

Video 2 0,04

Audio 2 0,04

3D Model 2 0,04

Solution Nature
Subjective 13 0,24

Objective 42 0,76

Importance
Low-Stake 44 0,8

High-Stake 11 0,2

Precondition

Manipulation

Performance 21 0,38

Transparency 29 0,53

Interaction 17 0,31

Representation 12 0,22

Individuality 17 0,31

Task 7 0,13

Setup
Single Trial 8 0,15

Multiple Trials 47 0,85

Feedback
Not Given 40 0,73

Given-Immediate 13 0,24

Given-Delayed 8 0,15

User-AI Onboarding
None 28 0,51

Instruction 18 0,33

Pre-Experimental Usage 15 0,27

Reward Structure

Monetary Performance 24 0,44

Monetary Non-Performance 10 0,18

None 16 0,29

Non-Monetary Performance 2 0,04

Non-Monetary Non-Performance 3 0,05
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