
Old-fashioned CPU optimisation of a

fluid simulation for investigating turbophoresis
Dr. John Donners (SURFsara, Amsterdam), Prof. Dr. Hans Kuerten (TU/e)
Contact: john.donners@surfsara.nl

Scientific aim
The spectral code performs Direct Numerical 
Simulation of particle-laden non-isothermal 
channel flow at a frictional Reynolds number of 
950. Both passive particles and inertial 
particles are tracked in the flow. It is used for 
three purposes:

1. Study of turbulent dispersion of passive 
particles at rather high Reynolds number. This 
enables
the study of stochastic models for this problem.
2. Study of the validity of eddy diffusivity 
models for a passive scalar (temperature).
3. Study of the behaviour of inertial particles in 
inhomogeneous turbulent flow for the
development of suitable subgrid models in 
large-eddy simulation of particle-laden flow.

Goal of the project
The resolution is XxYxZ = 768x384x768
The program has been parallelized originally 
with MPI. The number of MPI tasks is limited to 
384 because of the 1D domain decomposition.  
The goal is to increase the performance of 
the model using a threaded OpenMP 
approach (strong scaling is used).

Results
Both the MPI communication and the threading 
performance of the Fourier transforms were 
optimized using advanced features of the MPI 
and the FFTW libraries. The OpenMP 
paradigm has been used to process the MPI 
communication of one array and the Fourier 
transforms of another array simultaneously.
Both the MPI communication and the Fourier 
transforms scale nicely when using more 
threads, resulting in over 10x speedup.

 10

 50

 100

 500

 64  128  256  512  1024  2048

64 MPI

96 MPI

128 MPI

192 MPI

ideal speedup

Original code

Need to calculate many small FFTs? 
Use the FFTW guru interface!
FFTW can combine many 1D transforms 
into one call with an excellent 
multi-threading scalability. Each 
transform can be strided in memory, 
without the need for dummy copies.

Preparing dummy arrays for MPI Alltoall? 
Use MPI derived datatypes instead!
MPI can send and receive non-contiguous 
blocks of data in one go, with a performance 
that is often higher than dummy copies. The 
subroutine MPI_Type_create_subarray is a 
great help to define these derived datatypes.

Is your code too cluttered? And too slow?
2 tips to use HPC libraries more effectively:

Reference
Kuerten and Brouwers, Lagrangian statistics of 
turbulent channel flow at Reτ = 950 calculated 
with direct numerical simulation and Langevin 
models, Phys. Fluids 25, 105108 (2013)

The figure shows the adopted parallelization strategy. 
Computations for each variable involve 2 fast Fourier 
transforms with a communication phase (MPI_Alltoallw) 
inbetween. One OpenMP thread is reserved for OpenMP, 
while the other threads are used for FFTW calls.

Discussion: is overlapping MPI 
and computations a smart idea?

YES! For a multi-threaded code, the use of an an extra core for 
MPI can be very advantageous: in this example, 86-98% of the 
MPI time is overlapped with Fourier transforms. Ideally, the 
performance of the code can be doubled with only a modest 
increase in number of cores used. E.g., when using 5 threads and 
1 extra MPI thread, the core increase is only 20%. So, the impact 
increases with an increasing thread count per process. MPI 
scales as well, as less processes per node share one network 
adapter.

NO! In practice, overlap of MPI and computations is severely 
limited without extra resources. Experiments where no exta core 
is reserved for the MPI-thread, give very poor performance. The 
kernel is unable to divide the time between MPI and computations 
efficiently. The same holds for non-blocking collectives as they 
are implemented in the latest release of MPICH. The use of the 
MPI_Test call to progress the communication is not effective. 
The performance gain is about 10%, if at all.

MPI thread

FFT threads

u

OpenMP
barrier

extra OpenMP
barrier

v w

Original code

Threaded code

Key

T
im

e 
(s

)

Cores


	Slide 1

