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Executive Summary 
This deliverable describes the results of Task 12.4: Workload collocation based on container technologies to               
improve isolation, in the Joint Research Activity (JRA) Work Package 12 of the HPC-Europa3 project. The                
document starts with an Introduction, motivating the need of Dynamic Resource Assignment (DRA) on HPC               
environments, and how container solutions can help us to achieve that scenario. 
 
We also include a description on the environment, which briefly summarises Singularity as the container               
technology used, parallel programming models (MPI, OpenMP and OmpSs), the Dynamic Load Balancing             
library (the tool that helps us to achieve DRA capabilities), and finally the supercomputers used as testbeds                 
for our evaluations: MareNostrum4 (from BSC), and MARCONI (from CINECA). 
 
The biggest part of the deliverable is dedicated to the functional evaluation of the workload collocation                
scenarios we propose. Starting with the description of the three scenarios designed: Resource Isolation              
(avoiding interference between applications running in the same node), Resource Sharing (using free             
resources for the same or other applications, running in the same node), and the new development TALP (the                  
Tracking Application Low-level Performance runtime), which gets online performance metrics of the            
applications and acts accordingly to improve their performance. The development of TALP is also a               
contribution of Task 12.4. All the different scenarios are thoroughly tested with the BT-MZ benchmark and                
analysed using performance analysis tools (Extrae and Paraver) to understand their insights. Additionally, the              
real world applications Quantum Espresso and Amber are tested for DRA capabilities using containers for               
their deployment. 
 
Our conclusions show that, the DRA use case is possible and recommended in supercomputers, and               
containers help us to achieve it. The main gain we see is a faster response time in the execution of workloads                     
(i.e. the set of applications finishes earlier), and an increased utilisation of the system, which is ideal for any                   
supercomputer owner willing to exploit its big investment to its maximum capacity. We therefore see a good                 
future for DRA and containers in current and future supercomputers, particularly with the current trend of                
having more and more resources inside a single computing node. 
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1 Introduction 
A supercomputer contains a big set of resources that many different users want to exploit at the same time.                   
This is the most classical scenario of what we call ​resource allocation in Computer Science: the set of                  
available resources must be assigned to a set of different users, trying to maximise their usage, while                 
achieving a fair share or following a specific scheduling policy. Supercomputers are very complex machines,               
and the set of resources they provide is therefore complex: computing cores organised in nodes, cache                
memories, main memory per node, distributed file systems, local file systems, different network interfaces,              
and so on.The mentioned resource allocation problem becomes really difficult, not only because many              
resources are offered, but also because a big number of users want to use them. 
 
The most common approach in supercomputers nowadays is to book a set of resources for a single user,                  
exclusively (i.e. not allowing other users run anything on the reserved nodes). Since supercomputers run               
queuing systems that deal with nodes in their scheduling, in most cases the granularity considered uses the                 
concept of node as the basic resource unit to be assigned. This way, when an application asks for resources, it                    
gets a reservation to use a number of nodes (depending on its demands), and the application runs there in an                    
isolated manner. The node approach has two main advantages: on one hand, a simple unit for resource                 
allocation is selected (the node), which makes the scheduling problem much more simple; on the other hand,                 
reserving a node for a single user avoids interferences between applications, which could cause misbehaviour               
in terms of performance for both applications trying to share some resources. Besides, while current batch                
schedulers, e.g. SLURM, are capable of allocating multiple jobs per node (i.e. share a node’s resources), the                 
allocation achieved is static, based on the cores needed, and it is very likely that performance of the                  
applications sharing the node are negatively affected, due to the lack of specific control of the resources used                  
by each application.  
 
Current trends in computer architecture, in particular architectures dedicated to build supercomputers, show             
us that the number of resources available in a single node is increasing fast. We can see that the number of                     
cores has increased significantly during recent years, and not only that, but also new storage systems are                 
commonly seen in new machines (the so-called NVMs, Non-Volatile Memories), together with specific             
processors to deal with big amounts of data in a vectorial way (i.e. the Graphical Processing Units, or GPUs).                   
The more resources a node has, the less probable is that a single application is going to be able to exploit all                      
of them at the same time. For instance, we can see applications with a high computational demand, that may                   
be interested in using the GPUs to speed up the processing (or not using them at all), but on the other hand,                      
applications with a higher demand on the storage system may wish to exploit the NVM available (or, again,                  
leaving NVMs free). Having these scenarios in mind, we are confident to foresee that, in a near future,                  
supercomputers will have to share resources inside a node for different applications, while ensuring at the                
same time their performance remains unaffected (as mentioned in the previous paragraph). This is why in the                 
HPC-Europa3 project we envisioned the need of Dynamic Resource Assignment (DRA) features to achieve              
both effective and efficient sharing of resources.  
 
New emerging supercomputing paradigms also demand more dynamicity in the way resources are assigned,              
For instance, the Interactive Supercomputing paradigm (as proposed in the Human Brain Project). In this               
scenario, an application (e.g. a simulation) is supposed to start using all the resources that have been made                  
available to it, and, at a certain moment, an interactive action is requested by the user (i.e. an analysis of                    
partial results, or their visualization). This kind of scenario cannot be fulfilled in current supercomputers,               
since the set of resources is fixed, and the only solution is to overload the resources provided, with the                   
corresponding affectance in performance for both simulation and analytics. Therefore, to efficiently solve             
this, the system is expected to be able to adapt the number of resources the simulation is using, to make room  
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for the analytics or visualization job that must be served at that moment. Again, DRA features can solve this                   
situation in the most effective manner. 
 
Container technologies have emerged as a lightweight solution to achieve portability of applications between              
systems, as opposed to full-stack virtualisation. Containers remove the Operating System virtualisation layer             
to reduce the typical overhead found when using full-stack virtualisation, and this makes them a suitable                
solution to achieve portability between HPC systems, where performance is of paramount importance. When              
considering container solutions for supercomputers, we can find schedulers able to assign containers to a set                
of disjoint resources (e.g. Kubernetes). However, none of these schedulers includes the capacities we want               
with respect to DRA (i.e. share resources between containers in a single node). 
 
The objective of Task 12.4 in HPC-Europa3 is to achieve a Dynamic Resource Assignment scenario with the                 
help of containers. Our starting point will be hybrid applications (i.e. that exploit both intra- and inter-node                 
parallelism levels) as the most common paradigm used in supercomputers to achieve their full potential.               
Besides, BSC contributes to this task with DLB ​[1]​, a Dynamic Load Balancing library able to act as a ​node                    
scheduler​, and thus enact the shifting of resources between applications inside a node. The current               
implementation of DLB is able to handle CPU cores as resources, although future versions could include                
more node’s resources (i.e. memory, disk, …), therefore the ​core will be the resource we will target for                  
dynamicity. This essentially means that, if a parallel application using a number of threads enters a sequential                 
phase, or a synchronization point where some threads cannot progress with work, the unused resources will                
be lent to other threads of the same application (or to another application) so it can speed up its execution.                    
Effectively, this means that the utilisation of the system is overall increased, as is the main interest of the                   
supercomputer owner. 
 
This deliverable D12.5 – Workload collocation based on container technologies to improve isolation (due              
M24), reports the results of Task 12.4 in the JRA (Joint Research Activity) of the project. It includes two                   
years of work, since the initial installation and configuration of the environments used, the design of the                 
different scenarios to be tested, and finally the presentation of their evaluation. As it will be presented in                  
Section 3, three main scenarios are considered: 
 

- Resource isolation: where DLB will ensure that the applications inside a node do not disturb each                
other, avoiding performance issues. 

- Resource sharing: where DLB will be able to shift unused resources from an application to another. 
- Online statistics: where instead of reacting to an action of releasing resources, a runtime system               

(TALP) will collect online statistics that will serve to take decisions on resource allocation in the                
node. 

 
The three scenarios will cover the cases we foresee for a supercomputer. In the scenarios, the concept of                  
scheduling, compared with current practise, gets a new degree of complexity with our approach, since the                
unit to be assigned to a user is no longer a node, but a set of resources inside it (i.e. cores). This is our                        
contribution to achieve a more dynamic scheduling of resources in supercomputers.   
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2 Environment 

2.1 Singularity 
Singularity is a container implementation focused to be run on High-Performance Computing environments             
and the one we chose to carry out this study. In Deliverable D12.1-Container-as-a-service analysis report ​[2]​,                
it is concluded that Singularity best suits the HPC requirements due to its easier deployment, safer security                 
paradigm and presumably better performance. Therefore, our workflow collocation tests will be performed             
using Singularity as a way to not only avoid installation problems for the HPC sys-admins regarding security                 
and performance issues, but also to reach the maximum number of users interested in DRA techniques with                 
containers.  
 
In addition to its ease of use, Singularity needs minimal integration to leverage dynamic scheduling of its                 
resources. By default, every Singularity container does not apply cgroups to constraint hardware usage and               1

only isolates its Mount namespace while sharing the others with the host. As a result, applications running                 2

within containers have a complete view of the hardware resources of the host and are able to communicate                  
with the processes outside the containerized environment. 

2.2 Parallel Programming Models 
Since the tendency in HPC centers is to deploy clusters with massive amounts of processing units (i.e.,                 
cores), it is mandatory for scientific applications to exploit either the inter- or intra-node parallelism of its                 
code through parallel programming models. For the inter-node parallelism, the standard programming model             
is the Message Passing Interface (MPI), whereas for the intra-node is OpenMP. Nevertheless, the current               
OpenMP API (Application Programming Interface) is inadequate for dynamic resource reassignment because            
it does not offer a fine grained control over the parallel regions of an application. To solve OpenMP                  
deficiencies, there exists the OmpSs ​[3]​ ​[4]​ programming model, which allows a better resource control. 

 
OmpSs is a parallel programming model developed at        
Barcelona Supercomputing Center (BSC) with the aim to        
extend OpenMP so it can support asynchronous parallelism        
and heterogeneity. The OmpSs environment is built on top         
of BSC’s Mercurium compiler ​[5]​, and Nanos++ runtime        
system ​[6]​. Applications using OmpSs are more malleable        
by the Nanos++ runtime because of its execution model.         
While OpenMP framework uses a fork-join model, OmpSs        
works based on a thread-pool model represented in Figure         
1, which is easily malleable by the runtime since it can           
directly manage the processes’ threads and the workload of         
each one.  

 
 

Figure 1: The thread pool model used by OmpSs 
 

1 More details about cgroups in: http://man7.org/linux/man-pages/man7/cgroups.7.html 
2 More details about Mount namespace in: http://man7.org/linux/man-pages/man7/mount_namespaces.7.html 
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For our tests, we will focus on MPI+OpenMP and MPI+OmpSs programming models to take advantage of                
both intra- and inter-node parallelism. On one hand, we will be able to measure the workload imbalance                 
between different MPI ranks. On the other hand, OmpSs will allow us to easily reassign the number of                  
available threads for each rank in order to reduce the detected imbalance. In favor of reproducibility, we will                  
be using the Open MPI implementation ​[7]​ of the MPI interface and GNU compilers. 
 

2.3 Dynamic Load Balancing (DLB) Library 
The Dynamic Load Balancing (DLB) ​[1] ​[8] library is a dynamic           
library designed to speedup hybrid applications by enabling an         
efficient utilization of the computational resources. 
 
The DLB library is transversal to the different layers of the software            
stack as shown in Figure 2. It coordinates with them using standard            
mechanisms or APIs. 
 
The current stable version of DLB (2.1) offers support for OpenMP,           
OmpSs and MPI. 

Figure 2: DLB interaction with the application 
layers 

 
DLB offers an API that can be called from job schedulers, runtime systems or applications. It intercepts the                  
MPI calls using the PMPI interposition mechanism. DLB also uses standard API and functionalities from the                
operating system and OpenMP. 
 
DLB aims at being as transparent as possible to the application, using whenever it is possible standard                 
mechanisms or APIs (i.e, PMPI interface or OpenMP standard API). But, at the same time, it offers the user                   
the flexibility to use a simple API from the application code. 
 
DLB is organized in modules that are independent but also compatible and complementary. The three               
modules currently implemented in DLB are: LeWI, DROM and TALP, and they are explained in next                
sub-sections. 

2.3.1 LeWI: Lend When Idle 
The LeWI module will improve the load balance of hybrid applications by changing the number of threads                 
assigned to each process. To achieve a better load balance between processes, LeWI will lend the                
computational resources assigned to one process when it enters an MPI blocking call to another process                
running in the same node. 
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Figure 3: Example of LeWI functioning 

 
In Figure 3, we can see an example, on the left hand side we can see a hybrid application, with two MPI                      
processes and each one spawning two OpenMP threads. On the right hand side, the same application being                 
balanced using LeWI, when the MPI process 1 enters the MPI blocking call it will lend its two CPUs (cpu1                    
and cpu2) to the MPI process 2. At this point, MPI process 2 can use 4 threads (instead of 2) and finish its                       
computation faster. When the MPI process 1 exits the MPI blocking call it will recover its previous                 
resources. 

2.3.2 DROM: Dynamic Resource Ownership Management 
The DROM module ​[9] is designed to be used by resource managers, for example job schedulers, but it                  
offers an API that can also be called from the application. 
 
DROM allows to change the number of computational resources assigned to a process by changing the                
number of threads of the second level of parallelism (i.e. OpenMP or OmpSs) during its execution. 
 
This module can be used, for example, by a job scheduler to give priority to one job by reducing the number                     
of CPUs assigned to running jobs and assigning the freed CPUs to a high priority job. 

2.3.3 TALP: Tracking Application Low-level Performance  
The TALP module obtains performance metrics of the MPI processes during their execution and provides an                
API to consult them by the application or other entities. For each MPI process, TALP collects the time spent                   
doing MPI communication and the time spent doing useful computation. For the different CPUs in the                
system, it registers the amount of time that they are being used, idle or lent. Additionally, TALP provides                  
two API calls: dlb_autosizer_start and dlb_autosizer_end, that will check the performance metrics of the              
calling process and based on them TALP can decide to change the number of threads that the process is using                    
by calling the DROM module.  
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2.3.4 Porting of DLB to containers 
In this project, we have ported and tested DLB in a           
containerized environment. 
 
All the communication and data stored in DLB is         
done through a shared memory allocation that is        
visible to all the processes in the system. This allows          
DLB to behave within a container in the same way it           
would behave in bare metal. 
 
One of the advantages is that DLB can be installed          
inside the container allowing a more transparent       
deployment for the user. As we can see in Figure 4           
the communication with the different layers of the        
software stack is the same as when working in a bare           
metal environment.  

Figure 4: DLB interaction with the layers of the containerized 
app 

2.4 Testbed Description 
For this deliverable we have 2 high-end supercomputers available where to evaluate container technology:              
MareNostrum4 and MARCONI. With them, we will perform our tests regarding containers and DRA              
strategies. The details of both systems are described in next two sub-sections. 

2.4.1 MareNostrum4 
MareNostrum4 is a Tier-0 supercomputer in      
production at Barcelona Supercomputing    
Center (BSC) in Barcelona, Spain. It has       
available 3456 nodes in total where each       
node is based on Intel Xeon Platinum 8160        
CPUs with 48 cores ​[10]​. As depicted in        
Figure 5, one MareNostrum4 node contains 2       
sockets with 24 cores per socket. Cores from        
different sockets share the main memory      
(96GB), but not cache memories. However,      
cores within a socket have a common level 3         
cache. The fast MPI interconnection network      
is 100 Gbit/s Intel Omni-Path. 
 

 
Figure 5: Depiction of 1 node from MareNostrum4 containing 2 sockets 

with 24 cores each 
 
MareNostrum4 runs Linux 4.4.12 kernel and uses a modules environment, so it has multiple versions of                
Open MPI and GNU compilers available. It possesses a functional installation of Singularity 2.4.2 which we                
will use to run our tests with containers.  
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2.4.2 MARCONI 
MARCONI is the CINECA Tier-0 system based on the Lenovo NeXtScale platform, located in Bologna,               
Italy. This Tier-0 system started its life in mid-2016, with the set-up of the first partition (A1) based on                   
Broadwell chips and a computational power of 2 PFlops peak. After several upgrades, at the beginning of                 
2018 it was configured in three partitions: A1, made of 720 Intel Broadwell nodes; A3, with 2306 Intel                  
SkyLake nodes; and A2, a scale-out partition made of 3600 many-core Intel Knights Landing nodes, with a                 
total peak performance of about 20 Pflops. This configuration has been further enhanced in October 2018,                
with the upgrade of all A1 nodes to SKL (SkyLake).  
 
The current configuration of MARCONI is comprised of:  

● 3600 Intel Knights Landing nodes, each equipped with 1 Intel Xeon Phi 7250 @1.4 GHz, with 68                 
cores each and 96 GB of RAM, also named as MARCONI A2 - KNL 

● 3216 Intel SkyLake nodes, each equipped with 2 Intel Xeon 8160 @ 2.1 GHz, with 24 cores each                  
and 192 GB of RAM, also named as MARCONI A3 - SKL. 

 
This supercomputer takes advantage of the Intel Omni-Path Architecture, which provides the high             
performance interconnectivity required to efficiently scale out the system’s thousands of servers. A             
high-performance Lenovo GSS (GPFS Storage Server) storage subsystem, that integrates the IBM Spectrum             
Scale™ (GPFS) file system, is connected to the Intel Omni-Path Fabric and provides data storage capacity                
for about 10 PByte. 
 
The MARCONI A3 (SkyLake) partition will be used for testing. On such nodes, the operative system is                 
CentOS 7.3.1611. The software is available by a modules, and the Singularity version used for testing will be                  
3.0.1. 

3 Functional Evaluation of Workload Collocations 

3.1 Scenarios 
In order to evaluate the workload collocations and resource isolation of containers we have used three                
different scenarios that we will explain in the following sub-sections. 

3.1.1 Resource Isolation 
The first scenario is the one ensuring resource isolation. In this scenario, different applications have allocated                
disjoint computational resources inside different containers, but both are executed in the same computational              
node. 
 
Each application can use DLB and LeWI to improve its performance but the computational resources will                
not be shared across different containers. 
 
In Figure 6, we can see an example of two applications running into containers inside a node. They will not                    
share resources with each other but they will be able to improve its individual load balance with DLB and  
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Figure 6: Example of two hybrid applications running within two different containers and sharing a node 
 
LeWI. This way we achieve the Dynamic Resource Assignment (DRA) scenario targeted in this task,               
ensuring resource isolation between applications. 
 
We will refer to this scenario as “Resource Isolation”. 

3.1.2 Resource Sharing 
In this scenario, we will try to take advantage of the           
load balancing capabilities of DLB by allowing       
resource sharing between applications running in      
different containers. 
 
In Figure 7, we can see an example of two          
applications running in a computational node inside       
two different containers and sharing resources with       
DLB and LeWI. 
 
We will refer to this scenario as “Full Resource         
Sharing”. 

Figure 7: DLB Full Resource Sharing scenario 
 
As the number of cores per node has increased in recent generations of supercomputers, also their                
architectures become more complex. It is usual nowadays to find computational nodes composed by two               
sockets (or processors) in a NUMA (Non Uniform Memory Access) configuration. With this kind of               
architectures, it is common to see that it is not optimal to use cores from the other socket if all the threads of                       
your application are running in the other socket, because all the data of the application is already allocated in                   
one of the sockets’ corresponding memory. 
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For this reason, we define the “Affinity Aware” scenario; this scenario can share resources between               
containers as the “Full Resource Sharing” scenario, but, DLB will take into account the affinity of resources.                 
This means that each application can only use CPUs from the sockets where the application was originally                 
launched. 
 
I​n Figure 8, we can see an       
example where 3 applications    
running in three different    
containers run in an “Affinity     
Aware” scenario. Application A    
and B share Socket 1, while      
application C runs in Socket 2. In       
this case, the three applications     
can share resources to improve     
the load balance through DLB     
and LeWI, but the affinity aware  

Figure 8: DLB Affinity Aware scenario 
 

scheduler will not allow application C to run in CPUs 1 to 4, neither application A nor B to run in CPUs 5 to                        
8. But, application A and B will be able to run in each other resources. 
As a final consideration, DLB allows to use the computational resources of one application for another after                 
the first one has finished its execution. In a classical HPC environment, when one application finishes its                 
resources are returned to the resource manager or job scheduler. With DLB we consider the option of using                  
the resources “Post-Mortem”, meaning that when one application running within the DLB system finishes its               
execution, its resources can be used by another application running in the same DLB system. 

3.1.3 Dynamic Resource Assignment 
Finally, we consider a scenario where applications monitor themselves and take appropriate actions             
regarding  resource utilization to improve the overall efficiency. 
 
For this scenario, we use DROM and TALP modules from DLB and we instrument the application adding                 
calls to the API. The API calls are added at the most external loop of the application to monitor its parallel                     
efficiency at the MPI level. In the following piece of code we show an example of the instrumentation and                   
use of the API: 
 

1 for (iter=0; iter<N; iter++) 
2 { 
3 dlb_autosizer_start() 
4     ... 
5     //Application code for each step 
6     ... 
7  dlb_autosizer_end() 
8 } 
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The call to dlb_autosizer_start at line 3 initializes the counters to gather the metrics for this iteration and                  
based on the metrics gathered in the previous iterations takes the appropriate actions. These actions include                
modifying the amount of computational resources assigned to itself, either by increasing or decreasing them.               
To apply these changes, it will call the DROM module which is in charge of changing the resources assigned                   
to a process.  
 
At line 7, the call to dlb_autosizer_end will reduce the metrics collected during the iteration and store them in                   
the shared memory of DLB so they are available to be consulted later. 
 
Note that in this scenario the assignment of resources is done based on measurements of previous iterations,                 
therefore it can solve imbalances or inefficiencies produced algorithmically and iterative.  
 
Although processes manage themselves the resources this is coordinated within DLB to avoid core              
oversubscription. I.e, a process can only get more resources when another processes has released or freed                
some CPUs because it was infra-loaded. 
 
In the following evaluation we will refer to this scenario as TALP. 

3.2 NPB BT-MZ 
BT-MZ 3.3.1 [7], [8] belongs to the set of NAS Parallel Benchmarks, which are derived from computational                 
fluid dynamics (CFD), focused on evaluating the parallel performance of supercomputers. From all the set of                
NPB, we have chosen BT-MZ (Block Tri-diagonal solver Multi-Zone) because it is designed to exploit               
multi-level parallelism (MPI+OpenMP) and presents uneven workload allocation. CPU, network and           
memory bandwidth/latency are what mostly affect BT-MZ’s performance. 
 
Nevertheless, we noticed that the latest version of BT-MZ performs a load balancing algorithm during its                
initialization. This algorithm distributes intelligently the data across the available MPI ranks. So, we decided               
to modify the source code to disable the default mapping algorithm so the workload imbalance is more                 
evident. In addition, the original sources of BT-MZ use OpenMP directives incompatible with the OmpSs               
programming model, thus, we have been forced to adapt the parallel regions declarations of the code. As a                  
result, our benchmark is a modified version of BT-MZ 3.3.1 which presents a notable workload imbalance                
and is able to run with both OpenMP and OmpSs programming models, depending on the compiler used. 
 
As an example of BT-MZ workload imbalance, in Figure 9 we show the MPI calls pattern being performed                  
by BT-MZ during the execution of its iterations. In the picture, we can appreciate four rows each row                  
representing one rank MPI of BT-MZ. In each row there are green blocks representing the ​MPI_waitall call                 
being executed by the respective process, and between the blocks an empty space which indicates               
computation time. Thanks to the picture, you can observe how the 4th rank possesses a lot more work than                   
ranks 1, 2 and 3 because it does not remain blocked by the MPI runtime. Just the opposite of the first rank,                      
which almost has no work compared to its neighbors and must remain blocked until the last rank has                  
finished. 
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Figure 9: MPI call trace of 4 ranks BT-MZ 

 
Because of the load imbalance of BT-MZ, we believe that this application fits the best for our evaluation.                  
When testing various workload allocations and applying the Dynamic Load Balancing library we will be able                
to easily quantify the speedup and demonstrate the pros and cons of each strategy.  
 
In the next sub-sections we present a functional evaluation and preliminary results of the previously               
described scenarios (Section 3.1). First of all, we will validate whether the performance of native and                
containerized executions of BT-MZ is the same. Next, we will apply each scenario one by one to BT-MZ                  
within a container and evaluate its execution time. In the end, we will summarize all the tests and compare                   
the performance obtained by each strategy.  

3.2.1 Environment Validation 
Before evaluating workload allocation and dynamic resource management strategies, we must check that the              
application performance remains unaffected by the container layer. For this purpose, we will execute our               
modified version of BT-MZ benchmark using all cores of one MareNostrum4 node with and without               
containers. In addition, we will explore different MPI+OpenMP allocations to see if it affects somehow the                
virtualization. However, since we are interested in exploiting the container isolation to run various              
applications within the same node, we will also verify that the simultaneous execution of 2 applications                
within the node does not affect their performance. We will first execute our tests with one single BT-MZ.                  
Then, we will compare its execution times with a test where we run 2 different BT-MZ at the same time. In                     
Table 1, we summarize the BT-MZ versions and allocation configurations we will explore in the first                
validation test.  
 

Technology Native, Singularity 

Simultaneous applications running 1 

BT-MZ version MPI+OpenMP,  MPI+OmpSs 

Ranks MPI x threads per rank 2x12 4x6 6x4 8x3 12x2 
Table 1: Summary of the first validation test 
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For the first validation test we will compare the native and within a container execution times of one BT-MZ                   
process. We also will compare its execution time when compiled with OpenMP and OmpSs to demonstrate                
that OmpSs achieves the same performance. Figure 10 shows an example of how we will allocate the                 
resources for this test with 2x12 MPI+OpenMP allocation. Notice that for all the explored configurations we                
will only fill one socket of the node while the other remains empty. This will allow us to later fill the                     
remaining socket with another BT-MZ process and compare the outcomes of this test with the following. 
 
The Singularity container we will be using consists of a Debian 8 distribution where we have installed Open                  
MPI 1.10.7 libraries (same as in the host) and the GNU compilers offered by Debian repositories. The                 
container also contains the runtime environment required by OmpSs (Nanos++ and Mercurium compiler).  
 
Figure 11 shows the average execution time of 5 runs with OpenMP and OmpSs exploiting different resource                 
allocations. In the ​x​-axis the number of MPI ranks and threads per rank deployed are represented, while the                  
y​-axis shows the average execution time in seconds. Each label from the ​x​-axis contains 4 bars with light                  
blue, strong blue, light red and strong red. The light colors belong to native executions with OpenMP and                  
OmpSs, whereas the strong ones to container executions. It is visible that, despite a very slight variability, the                  
performance difference among technologies and programming models in every resource allocation is            
minimum and negligible. That variability is due to using differents Nanos++ and compiler versions within               
the native and the containerized environment. One can also appreciate that BT-MZ performs better as more                
MPI ranks it has, but this is dependent on the benchmark. 
  
 
 

 
Figure 10: Depiction of 1 BT-MZ resource allocation with 2 ranks MPI and 12 threads per rank 
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Figure 11: Execution time comparative of BT-MZ with native and containers 

 
After verifying the performance running one application process within containers equals native executions,             
we will check that the execution times when running 2 applications or containers simultaneously do not vary.                 
In the test above, we were only exploiting one socket of the two available on purpose. Now, we can launch in                     
the second socket another BT-MZ process running with the same resource allocations. Figure 12 shows an                
example of this test, where we are exploiting the whole node with 2 different BT-MZ processes.  
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Figure 12:  Depiction of 2 BT-MZ running simultaneously with 2 ranks MPI and 12 threads per rank 
 

To avoid repeating the same experiment, instead of comparing OpenMP and OmpSs versions of BT-MZ, we                
will execute BT-MZ with OmpSs plus DLB using resource isolation and full resource sharing strategies.               
Again, we also will repeat the runs using native and virtualized environments. Table 2 summarises the test’s                 
details. 
 

Technology Native, Singularity 

Simultaneous applications running 2 

BT-MZ version MPI+OmpSs with DLB 

Resource collocations strategies 
Resource Isolation, Full Resource Sharing 

(FRS) 

Ranks MPI x threads per rank 2x12 4x6 6x4 8x3 12x2 
Table 2: Summary of the second validation test 

 
We run both BT-MZ processes 5 times with each technology, resource allocation, and strategy to get the                 
average execution time. We observed that, in this case, both processes take the same execution time to finish,                  
which shows us that no process interferes with its neighbour. Because of that, in Figure 13 we only represent                   
the maximum average execution time from each configuration. In the ​x​-axis it is represented the used                
resource allocation and in the ​y​-axis the time in seconds. The light green and purple bars belong to native                   
executions whereas the strong green and purple to executions within containers. Together, the green color               
belongs to Resource Isolation strategy and the purple to Full Resource Isolation. 
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Figure 13: Maximum execution times comparative of BT-MZ with native and containers, 
 this time when running 2 applications concurrently 

 
As in the first validation test, native and within containers executions take almost the same time in every                  
MPI+OmpSs configuration.. The minimal difference observable in each resource allocation is due, again, to              
the different versions of the runtime and compiler used within the container.  
 
If we compare the two DLB strategies tested it might seem strange that the FRS strategy does not present any                    
improvement, since each application has available a lot more cores than the initially allocated. Considering               
that the two BT-MZ being executed possess the same resource allocation and data, their computational               
patterns match perfectly meaning that none of them can benefit from the resources of the other process.                 
Besides, the thread migration between sockets causes misses in L3 cache, penalizing this kind of scenarios.  
 
Finally, to end this section, we determined the speedup obtained by each technology and BT-MZ version                
with respect to the BT-MZ with OmpSs execution in native from the first validation test. The speedup has                  
been obtained as: 

peedup S conf iguration
MP I  x threads =

t Native OmpSs
MP I  x threads

t conf iguration
MP I  x  threads  
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Where ​configuration can be: Native/Singularity OmpSs, Native/Singularity DLB Resource Isolation or           
Native/Singularity DLB FRS; and ​MPI x Threads​: 2x12, 4x6, 6x4, 8x3 or 12x2. 
 
The ​x​-axis and ​y​-axis of Figure 14 represent the resource allocations and speedup respectively. Different bar                
colors belong to the various configurations of technologies (native or Singularity) and strategies (without              
DLB, DLB Resource Isolation and DLB Full Resource Sharing) experimented.  
 

 
Figure 14: Execution time speedups with respect of native OmpSs 

 
 

In the speedup plot it is clearly visible the gain provided by DLB and that the performance between native                   
and Singularity remains akin. DLB speeds up each application on its own, achieving the Dynamic Resource                
Allocation scenario we intended, while at the same time not disturbing the other BT-MZ application running                
in the same node. With DLB we obtained the maximum speedup when applying the Resource Isolation                
strategy in the 8x3 allocation (around 1,58 of speedup). In the 2x12 configuration the speedup obtained by                 
DLB is minimum because there are not enough parallel tasks in BT-MZ to fill all the potential threads                  
supplied, as displayed in Figure 15. Each color block in the figure represents a task. Up to 14 threads there                    
are enough tasks to fill each CPU, but from 15 threads onwards the runtime is not able to satisfy the work                     
demand. Therefore, one way to optimize DLB library effect is to increase the amount of MPI workers so the                   
most loaded ranks can borrow the threads of the less loaded.  
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Figure 15: BT-MZ trace showing the execution of its tasks with 2 ranks MPI and 12 threads per rank. 
The rank in the bottom part of the figure uses the resources available from the top rank, while blocked 

 

3.2.2 Scenario 1: Resource Isolation 
In order to test our workload collocation and dynamic resource management strategies, we designed a               
possible use case where we are executing concurrently 5 different BT-MZ processes within the same               
computational node, each process with different resource allocation. Figure 16 depicts the use case where we                
launch 5 BT-MZ each one with 3x2, 6x3, 2x2, 2x5 and 5x2 ranks MPI and threads per rank, filling the whole                     
node. Each BT-MZ process possesses a particular color to highlight that it is independent of the others.  
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Figure 16: Designed use case for running our experiments. One node contains 5 processes with different resource allocations  

 
In our first scenario “Resource Isolation” none of the applications running within the node share resources.                
This can be achieved very easily using containers, since each container builds its own software environment                
and assigns the resource management task to the host system. For example, one can deploy 2 applications                 
with very different software stacks using the same shell script: 
 

mpirun -np $X singularity exec $IMAGE_APP1 ./app1 
mpirun -np $Y singularity exec $IMAGE_APP2 ./app2 

 
This is possible thanks to containers capacity to store in a file (image) the entire environment. This is also                   
achievable without using containers, however, the complexity of the process increases since the user must               
manage each application requirements using the environment of the host. 
 
The Dynamic Load Balancing library uses the shared memory of the host to handle the cores of each process.                   
Therefore, to ensure the isolation between applications running within containers, it is only necessary to               
define for each application a separated shared memory file. 
 
In Figure 17, we show the average execution time of 5 runs using the use case depicted in Figure 16. Each                     
BT-MZ process runs inside a Singularity container summoned with ​mpirun​. The left side of the plot shows                 
the execution time of our 5 BT-MZ processes without using DLB, that by default ensures resource isolation                 
if the user has bound container cores through the host scheduler or MPI runtime. The right side of the plot                    
shows the same information but applying DLB with resource isolation, that is, each application has a                
separated shared memory for DLB. In the ​x​-axis, the 5 BT-MZ applications appear and in the ​y​-axis, their                  
execution time in seconds. It is clear how the execution time of the processes using DLB decreases thanks to                   
the Dynamic Resource Assignment scenario achieved. 
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Figure 17: Average execution time of the use case in the Resource Isolation scenario 

3.2.3 Scenario 2: Resource Sharing 
To ensure resource isolation, we had to define different shared memory files for each application’s DLB.                
Thus, for resource sharing we must configure each application’s DLB to operate using the same shared                
memory. Once this is done, we have the possibility to adapt the resource management according to the                 
application’s features of our interests by following the Affinity Aware or Post-Mortem approaches (see              
Section 3.1.2).  
 
Figure 18 shows the outcomes a user might expect when applying Resource Sharing to its containerized                
applications. The plot displays the same information as in Figure 17 with the difference that now the                 
scenarios we are testing are: DLB Affinity Aware, DLB Affinity Aware + Post-Mortem, DLB Full Resource                
Sharing and DLB Full Resource Sharing + Post-Mortem. 
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Figure 18: Average execution time of the use case in the Resource Sharing scenario 

 
It is remarkable how the maximum execution time of the use case decreases by adding the Post-Mortem                 
technique, which allows the slowest processes to borrow threads from the fastest when they have finished (in                 
this case, BT-MZ-1 and BT-MZ-3 are the slowest; BT-MZ-2 and BT-MZ-5 the fastest). On the other hand, if                  
we compare Affinity Aware with FRS, we can notice how Affinity Aware approach is a bit better because it                   
does not cause cache misses during thread migrations between sockets. Nevertheless, FRS with Post-Mortem              
improves Affinity Aware + PM performance. Since in FRS the 3 BT-MZ running in the second socket have                  
access to the resources of the first, and because we apply Post-Mortem, BT-MZ-3, 4 and 5 can leverage the                   
cores from the first socket without the need of returning them to BT-MZ-1 or 2 (because they have already                   
finished), thus minimizing the amount of thread migrations. With all these techniques we are achieving a                
higher utilisation of the node, therefore reducing the response time of the workload defined with these 5                 
executions of BT-MZ (they globally end faster). 
 

3.2.4 Scenario 3: TALP 
Our last scenario is with TALP, an alternative to the DLB’s Lend When Idle algorithm (LeWI, see Section                  
2.3.1). TALP is interesting to be tested because it has the ability to reassign resources based on                 
computational time metrics, rather than the MPI blocking calls. Again, applying TALP to containerized              
applications is trivial because, as with Resource Sharing, it only requires from the DLB of all applications to                  
use the same shared memory. Figure 19 presents the average execution time from 5 runs of our use case                   
using TALP, which will act as our baseline for comparison with the rest of scenarios.  
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Figure 19: Average execution time of the use case in the TALP scenario 

3.2.5 Summary 
In order to compare the 3 presented scenarios, we attach Figures 20 and 21. Figure 20 shows the speedup of                    
each scenario with respect to the execution of the ue case from Figure 16 on the host (Native) and using the                     
pure OmpSs version of BT-MZ. The speedup has been obtained as: 
 

peedup S AP P #
scenario = t AP P #

scenario

t AP P #
Native OmpSs  

 
Where ​scenario ​can be: DLB Res. Isolation, DLB Affinity Aware, DLB Affinity Aware+PM, DLB FRS,               
DLB FRS+PM or TALP; and ​APP# can be: BT-MZ-1 (3x2), BT-MZ-2 (6x3), BT-MZ-3 (2x2), BT-MZ-4               
(2x5) or BT-MZ-5 (5x2).  
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Figure 20: Execution time speedups of each scenario with respect of Native OmpSs 
 
With DLB, our containerized application was able to obtain a maximum speedup of 2,3 (DLB FRS+PM,                
BT-MZ-3 case) and a minimum of 1,04 (DLB FRS, BT-MZ-4 case). DLB Affinity Aware and DLB FRS are                  
very similar in performance, so the potential gain induced by these 2 scenarios will be dependent on the                  
application's features. The Post-Mortem technique has given such good results because in this use case some                
processes finish much earlier (BT-MZ-2, BT-MZ-4 and BT-MZ-5) releasing their resources for the slower              
applications (BT-MZ-1 and BT-MZ-3). 
 
Figure 21 shows the maximum execution time of the defined workload on each scenario, from where we can                  
conclude that DLB Affinity Aware+PM and DLB FRS+PM get the fastest time. Contrary to this, DLB                
Resource Isolation and TALP achieve only a slightly better performance than the version without any               
Dynamic Resource Assignment capacities (OmpSs only, first column in the Figure). The DLB Resource              
Isolation scenario can only manage the allocated cores for its own application. TALP, however, is able to see                  
and manage all the cores available in the node, but the current version of TALP is just a prototype with a                     
very basic resource reassignment algorithm, which explains why the gain is so small. In the future, we plan                  
to implement more advanced techniques to improve this gain. 
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Figure 21: Maximum execution time of each scenario workload 

3.3 DLB Integration with Containerized Scientific Applications 
The potential of the DLB library to improve the performance of some widely used codes in material science                  
and computational chemistry has been investigated, installing both the application and the DLB library in               
Singularity containers to be provided to users.  
 
The chosen codes were Quantum Espresso 6.3 ​[11] and Amber 16 ​[12]​, due to the fact that both can be                    
executed as pure MPI and as hybrid MPI+OpenMP also. 
 
Quantum Espresso (QE) is an integrated suite of Open-Source computer codes for electronic-structure             
calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves,               
and pseudopotentials. 
 
Amber is a suite of biomolecular simulation programs. It began in the late 1970's, and is maintained by an                   
active development community. The term "Amber" refers to two things. First, it is a set of molecular                 
mechanical force fields for the simulation of biomolecules (these force fields are in the public domain, and                 
are used in a variety of simulation programs). Second, it is a package of molecular simulation programs                 
which includes source code and demos. 
 
As it is now very well known that the containerization techniques do not introduce overhead in the code                  
execution, it was decided to start first with tests on bare metal and then with positive results to move to the                     
containers preparation. The results of the tests are reported here below. 
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3.3.1 Quantum Espresso 

QE has been compiled with OpenMPI 2.1.1 on MARCONI (see Section 2.4.2), and the DLB library tool has                  
been installed in the system.  
 
In the test case considered, a Silane (SiH4) molecule has been simulated. Several MPI+OpenMP              
combinations have been tested, using both a single node and multiple-node executions, varying the number               
of MPI tasks and OpenMP threads per task, and the total execution time was compared in the runs with and                    
without DLB usage. 
 
The tests show that, unfortunately, DLB was unable to increase the performance of such QE runs, due to the                   
well balanced load among the MPI tasks in the code.  
 

3.3.2 Amber 

Considering the results obtained with QE, it was decided to replicate the test with another code. Other tools                  
like GROMACS and OpenFOAM appeared to be already balanced as for QE and thus not useful for this                  
specific test.  
 
Based on the results shown in Figure 22 and Figure 23 for an execution with 48 MPI tasks on a SkyLake                     
MARCONI node using Intel Trace Analyzer and Collector (ITAC) tool ​[13]​, Amber (compiled with Intel               
2017) seemed to be a good candidate to have a boost of performance using DLB, due to its load imbalance                    
between MPI ranks. The test case considered is named as PMEMD, that supports Particle Mesh Ewald                
simulations, Generalized Born simulations, Isotropic Periodic Sum, ALPB (Analytical Linearized          
Poisson-Boltzmann) and, as of AMBER v16, gas phase simulations using both the AMBER and CHARMM               
Force fields. 
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Figure 22:  The execution time for each MPI task in a PMEMD simulation in Amber.  

 

 
Figure 23: The ITAC summary graph of the PMEMD Amber simulation.  

 
Amber was compiled with Intel 2017 and the DLB library tool has been installed on the same system. 
 
On a single MARCONI SkyLake node a run with 8 MPI tasks and 6 OpenMP threads was done, with and                    
without the DLB library. The total time of the run was considered as performance indicator, but no                 
performance improvements were noted.  
 
At this point, further investigations are needed to understand better the features of the load balancing of MPI                  
processes in the code (possibly with the use of Extrae and Paraver performance analysis tools). These                
additional analyses will be performed, even if the task is formally completed, in parallel with the                
benchmarking activities and reported at the next progress reporting (M18).  
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4. Conclusions 
The conclusions of the first deliverable produced by the JRA (D12.1 - Container-as-a-service analysis report)               
have been very valuable for the execution of this work. We have been able to choose Singularity as the best                    
container application solution and arrange our testbeds accordingly for experimentation. In addition to this,              
we have also designed, prepared and evaluated containers resource isolation and sharing capabilities. For              
this, we ported the NAS Parallel Benchmark BT-MZ to the OmpSs programming model and implemented a                
prototype of TALP, the new module of BSC’s Dynamic Load Balancing Library (DLB). Last but not least,                 
we attempted to integrate DLB with some scientific applications (Quantum Espresso and Amber) for              
subsequent containerization and testing with Singularity in the benchmarking activities (Deliverable 12.6            
Benchmarking results, due M30). 
 
Singularity appeared to be a highly malleable container implementation to control resource allocation and              
workload management. Because Singularity does not exercise ​cgroups capabilities, it delegates the resource             
allocation and scheduling of tasks to the host’s resource manager, for example SLURM, the MPI runtime or                 
others. Both resource isolation and resource sharing among containers are easily achievable depending on              
how the user or host has spawned the containers as they would be normal processes of the system. However,                   
be aware that, by default, Singularity containers mount some directories from the host’s filesystem hierarchy:               
/tmp or ​/dev/shm​, which might be two host directories whose contents are visible and accessible for all                 
containers. Thus, if users require the isolation of their application's temporary files, they must manually               
modify where these kinds of directories are mounted within the container. This can be easily done with the                  
--bind|-B​ ​option. 
 
We have demonstrated that DLB library is a powerful tool to speedup hybrid applications and to administer                 
hardware resources between containers, which has helped us to demonstrate the Dynamic Resource             
Assignment capabilities promised in this task of HPC-Europa3. Two or more containerized applications             
leveraging DLB are able to be run within the same computational node concurrently while ensuring their                
software stack isolation and experimenting a performance boost thanks to DLB management. In addition,              
DLB provides several resource management strategies to better adapt to the application’s features and user               
needs: Resource Isolation, if the user does not want to share resources; Full Resource Sharing or Affinity                 
Aware, to share cores but minimizing thread migration overheads due to the node’s hardware organization;               
Post-Mortem, to make available one container CPUs when it has finished its execution; and TALP, to                
distribute the resources based on computational metrics rather than MPI blocking calls. 
 
A more extended demonstration of DLB usage has been introduced with its integration with Quantum               
Espresso and Amber in MARCONI supercomputer. Although the preliminary results do not show any              
performance improvements, we have demonstrated that DLB integration with scientific applications is easily             
achievable and Amber potentially could take advantage of it given the load imbalance Amber possesses               
between MPI processes. 
 

  

30 
[HPC-Europa3 – GA # 730897] 



D12.5 - Workload collocation based on container technologies to improve isolation 

5. References 

[1] M. Garcia, J. Labarta, J. Corbalan, ‘Hints to improve automatic load balancing with LeWI for hybrid 
applications’, ​Elsevier Journal of Parallel and Distributed Computing​, vol. 74, no. 9, pp. 2781–2794, 
Sep. 2014 [Online]. Available: ​https://www.sciencedirect.com/science/article/pii/S0743731514000926​. 
[Accessed: 26-Mar-2019] 

[2] N.Wilson, R. Sirvent, M. Renato, O. Rudyy, G. Muscianisi, Y. Cardenas, R. Laurikainen, A-M. Saren, 
D. Dellis, ‘Container-as-a-service analysis report’, D12.1, 2019 [Online]. Available: 
http://doi.org/10.23728/b2share.c93bf40018f74f04ab8db4636f55f143​. [Accessed: 18-Mar-2019] 

[3] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, and J. Planas, ‘Ompss: a Proposal for Programming 
Heterogeneous Multi-Core Architectures’, ​Parallel Process. Lett.​, vol. 21, no. 02, pp. 173–193, Jun. 
2011 [Online]. Available: 
https://www.researchgate.net/publication/220439810_Ompss_a_Proposal_for_Programming_Heterogen
eous_Multi-Core_Architectures​. [Accessed: 05-Apr-2019] 

[4] ‘The OmpSs Programming Model | Programming Models @ BSC’. [Online]. Available: 
https://pm.bsc.es/ompss​. [Accessed: 05-Apr-2019] 

[5] ‘Mercurium | Programming Models @ BSC’. [Online]. Available: ​https://pm.bsc.es/mcxx​. [Accessed: 
19-Mar-2019] 

[6] ‘Nanos++ | Programming Models @ BSC’. [Online]. Available: ​https://pm.bsc.es/nanox​. [Accessed: 
19-Mar-2019] 

[7] E. Gabriel ​et al.​, ‘Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation’, 
in ​Recent Advances in Parallel Virtual Machine and Message Passing Interface​, 2004, pp. 97–104 
[Online]. Available: ​https://link.springer.com/chapter/10.1007/978-3-540-30218-6_19​. [Accessed: 
26-Mar-2019] 

[8] ‘Dynamic Load Balancing | Programming Models @ BSC’. [Online]. Available: ​https://pm.bsc.es/dlb​. 
[Accessed: 05-Apr-2019] 

[9] M. D’Amico, M. Garcia-Gasulla, V. López, A. Jokanovic, R. Sirvent, and J. Corbalan, ‘DROM: 
Enabling Efficient and Effortless Malleability for Resource Managers’, in ​Proceedings of the 47th 
International Conference on Parallel Processing Companion​, 2018, p. 41 [Online]. Available: 
http://dl.acm.org/citation.cfm?id=3229710.3229752​. [Accessed: 04-Apr-2019] 

[10] ‘Support Knowledge Center @ BSC-CNS’. [Online]. Available: 
https://www.bsc.es/user-support/mn4.php​. [Accessed: 19-Mar-2019] 

[11] ‘QUANTUMESPRESSO - QUANTUMESPRESSO’. [Online]. Available: 
https://www.quantum-espresso.org/​. [Accessed: 29-Mar-2019] 

[12] ‘The Amber Molecular Dynamics Package’. [Online]. Available: ​http://ambermd.org/​. [Accessed: 
29-Mar-2019] 

[13] ‘Intel® Trace Analyzer and Collector’, ​Intel​, 12-Feb-2019. [Online]. Available: 
https://software.intel.com/en-us/trace-analyzer​. [Accessed: 05-Apr-2019] 

  

31 
[HPC-Europa3 – GA # 730897] 

http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/9ClX
https://www.sciencedirect.com/science/article/pii/S0743731514000926
http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/9ClX
http://paperpile.com/b/beCfiT/tRan
http://paperpile.com/b/beCfiT/tRan
http://doi.org/10.23728/b2share.c93bf40018f74f04ab8db4636f55f143
http://paperpile.com/b/beCfiT/tRan
http://paperpile.com/b/beCfiT/OpUI
http://paperpile.com/b/beCfiT/OpUI
http://paperpile.com/b/beCfiT/OpUI
http://paperpile.com/b/beCfiT/OpUI
http://paperpile.com/b/beCfiT/OpUI
https://www.researchgate.net/publication/220439810_Ompss_a_Proposal_for_Programming_Heterogeneous_Multi-Core_Architectures
https://www.researchgate.net/publication/220439810_Ompss_a_Proposal_for_Programming_Heterogeneous_Multi-Core_Architectures
http://paperpile.com/b/beCfiT/OpUI
http://paperpile.com/b/beCfiT/pQOh
https://pm.bsc.es/ompss
http://paperpile.com/b/beCfiT/pQOh
http://paperpile.com/b/beCfiT/sQhm
https://pm.bsc.es/mcxx
http://paperpile.com/b/beCfiT/sQhm
http://paperpile.com/b/beCfiT/sQhm
http://paperpile.com/b/beCfiT/STKz
https://pm.bsc.es/nanox
http://paperpile.com/b/beCfiT/STKz
http://paperpile.com/b/beCfiT/STKz
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
https://link.springer.com/chapter/10.1007/978-3-540-30218-6_19
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/hoWd
http://paperpile.com/b/beCfiT/K0Jz
https://pm.bsc.es/dlb
http://paperpile.com/b/beCfiT/K0Jz
http://paperpile.com/b/beCfiT/K0Jz
http://paperpile.com/b/beCfiT/k7M1
http://paperpile.com/b/beCfiT/k7M1
http://paperpile.com/b/beCfiT/k7M1
http://paperpile.com/b/beCfiT/k7M1
http://paperpile.com/b/beCfiT/k7M1
http://dl.acm.org/citation.cfm?id=3229710.3229752
http://paperpile.com/b/beCfiT/k7M1
http://paperpile.com/b/beCfiT/KCbU
https://www.bsc.es/user-support/mn4.php
http://paperpile.com/b/beCfiT/KCbU
http://paperpile.com/b/beCfiT/YWWw
https://www.quantum-espresso.org/
http://paperpile.com/b/beCfiT/YWWw
http://paperpile.com/b/beCfiT/dPtT
http://ambermd.org/
http://paperpile.com/b/beCfiT/dPtT
http://paperpile.com/b/beCfiT/dPtT
http://paperpile.com/b/beCfiT/Kvw3
http://paperpile.com/b/beCfiT/Kvw3
http://paperpile.com/b/beCfiT/Kvw3
https://software.intel.com/en-us/trace-analyzer
http://paperpile.com/b/beCfiT/Kvw3


D12.5 - Workload collocation based on container technologies to improve isolation 

Appendix 

Resource Isolation deployment with DLB 
The ​mpirun​ commands used to run from the host the Resource Isolation test have the following format:  
 
export NX_ARGS=”--enable-dlb --enable-block” 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x               
DLB_ARGS=”--lewi --shm-key=bt-mz1” -x NX_ARGS singularity exec $IMAGE             
bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x               
DLB_ARGS=”--lewi --shm-key=bt-mz2” -x NX_ARGS singularity exec $IMAGE             
bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x               
DLB_ARGS=”--lewi --shm-key=bt-mz3” -x NX_ARGS singularity exec $IMAGE             
bt-mz.C.2  
#BT-MZ 2x5 
mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x               
DLB_ARGS=”--lewi --shm-key=bt-mz4” -x NX_ARGSsingularity exec $IMAGE           
bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x               
DLB_ARGS=”--lewi --shm-key=bt-mz5” -x NX_ARGS singularity exec $IMAGE             
bt-mz.C.5  
 

Resource Sharing deployment with DLB 
The ​mpirun​ commands used to run from the host the Resource Sharing test have the following format. 
 

● Affinity Aware 
 

export DLB_ARGS=”--lewi --lewi-affinity=nearby-only” 
export NX_ARGS=”--enable-dlb --enable-block” 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2  
#BT-MZ 2x5 
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mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.5  
 

● Affinity Aware + Post-Mortem 
 
export DLB_ARGS=”--lewi --lewi-affinity=nearby-only 
--debug-opts=lend-post-mortem” 
NX_ARGS=”--enable-dlb --enable-block” 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2  
#BT-MZ 2x5 
mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.5  
 

● FRS (Full Resource Sharing) 
 
export DLB_ARGS=”--lewi” 
export NX_ARGS=”--enable-dlb --enable-block” 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2  
#BT-MZ 2x5 
mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.5  
 
 

● FRS+PM (Full Resource Sharing + Post-Mortem) 
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export DLB_ARGS=”--lewi --debug-opts=lend-post-mortem” 
export NX_ARGS=”--enable-dlb --enable-block 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2  
#BT-MZ 2x5 
mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.5  
 

TALP deployment 
The ​mpirun​ commands used to run from the host the TALP test have the following format: 
 
export DLB_ARGS=”--talp --drom” 
export NX_ARGS=”--enable-dlb” 
export SINGULARITYENV_LD_PRELOAD=$DLB_HOME/lib/libdlb_mpif.so 
#BT-MZ 3x2 
mpirun -np 3 --rankfile rank3x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.3  
#BT-MZ 6x3 
mpirun -np 6 --rankfile rank6x3.txt -x OMP_NUM_THREADS=3 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.6  
#BT-MZ 2x2 
mpirun -np 2 --rankfile rank2x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2  
#BT-MZ 2x5 
mpirun -np 2 --rankfile rank2x5.txt -x OMP_NUM_THREADS=5 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.2 
#BT-MZ 5x2 
mpirun -np 5 --rankfile rank5x2.txt -x OMP_NUM_THREADS=2 -x DLB_ARGS -x                   
NX_ARGS singularity exec $IMAGE bt-mz.C.5 
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