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4. Executive summary 

Containers are considered as an alternative for application portability among HPC centres. They offer 

a layer for portable execution of applications on various centres, with the question of performance 

penalty they may introduce. A number of representative and commonly used applications on HPC 

systems was selected and their behaviour with or without containers investigated. Two main ways of 

using containers were identified.  

• A portable image that runs everywhere, at least on the same architecture (like x86 and 

derivatives). 

• A portable development platform that is used on any machine of the same architecture in order 

to avoid unsatisfied dependencies on packages and versions. 

From the end user point of view, the first seems to be the desirable. But, taking into account 

performance issues, probably the second is the best choice. On the other hand, as it will be indicated 

in the next sections, using containers as a development platform may involve issues that the end user 

does not face on bare metal. At the end, an application-based performance modelling of containerized 

versus bare metal is presented. 

In some cases, different container frameworks were tested with the same application to investigate 

the possible influence of the framework on performance. 
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5. Introduction 

In order to investigate the effect of containerization in performance and portability among different 

HPC systems, a number of representative applications that explore different features of HPC systems 

have been selected. These include CPU/GPU features, network bandwidth and latency, memory 

bandwidth and IO performance. At the early stage of project, a number of applications was considered 

and a final decision about the applications to benchmark was agreed. These applications together with 

the responsible site and subsystems they depend on (based on experience) are summarized in Table 

3.1. 

Table 5.1: Applications selected for benchmarking, corresponding site to perform benchmark and factors that 

affect their performance. 

Site Application What mainly affects its performance 

GRNET GROMACS CPU/GPU features/speed, network speed/latency 

ICHEC WRF CPU, network, IO bandwidth and latency 

BSC ALYA CPU, network, Memory bandwidth and latency 

BSC BT-MZ CPU, network, Memory bandwidth and latency 

BSC HPCG Memory 

CINECA Tensorflow (without GPU) CPU 

CINECA Quantum Espresso  CPU, Network 

HLRS OpenFOAM Memory, IO, CPU 

HLRS PACE3D Memory, CPU 

HLRS Ping Pong Network Bandwidth and Latency 

HLRS Palabos Memory, CPU Features 

HLRS Data Analytics Workflow IO, Memory bandwidth 

CNRS DIRAC benchmark CPU 

CNRS RAMP Astro benchmark GPU (CPU), Memory, I/O bandwidth 

Each site carried out mainly on its own premises benchmarks and reports the obtained performance 

of containerized application with respect the bare metal performance. We should note that a rather 

large number of architectures and container frameworks were covered by these benchmarks. In 

addition, various frameworks for containerization were considered, based on the availability of 

container’s frameworks at each site. Various aspects related to containers usage are covered in the 

following sections, namely, the effect on performance of a fully portable container image, and the 

issues that an end user may face among different systems with different hardware and software. 

Details on how the available container frameworks were used on each system are presented. Finally, 

after presentation and interpretation of results of each code, a general conclusion on the use of 

containers on an HPC environment is presented. 
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6. GRNET Benchmarks 

GRNET selected GROMACS as application to benchmark containers versus bare metal. GROMACS 

is popular in studies of bio-molecular systems and materials science. 

4.1.  GROMACS 

GROMACS [1] is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian 

equations of motion for systems with hundreds to millions of particles. It is primarily designed for 

biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded 

interactions, but since GROMACS is extremely fast at calculating the non-bonded interactions (that 

usually dominate simulations) many groups are also using it for research on non-biological systems, 

e.g. polymers. GROMACS supports all the usual algorithms you expect from a modern molecular 

dynamics implementation, but there are also quite a few features that make it stand out from the 

competition. GROMACS provides extremely high performance compared to all other programs. A 

lot of algorithmic optimizations have been introduced in the code; for instance, extracted the 

calculation of the virial from the innermost loops over pairwise interactions, and it uses its own 

software routines to calculate the inverse square root. In versions 4.6 and up of GROMACS, on almost 

all common computing platforms, the innermost loops are written in C using intrinsic functions that 

the compiler transforms to SIMD machine instructions, to utilize the available instruction-level 

parallelism. These kernels are available in either single and double precision, and in support, all the 

different kinds of SIMD support found in x86-family (and other) processors. It supports single node 

parallelization using OpenMP, multi-node using hybrid MPI - OpenMP. In addition, all these 

parallelization schemes have excellent CUDA-based GPU acceleration on GPUs that have NVIDIA 

compute capability >= 2.0. 

4.2.  Benchmarks Environment 

GROMACS benchmarks performed on GRNET ARIS Tier-1 system. Two types of nodes were used. 

One part of the cluster consisting of 3 nodes of four socket E5-4650 10C v2 @ 2.40 GHz that was 

dedicated for HPCE3 T12.5 Benchmarks, supporting both Docker (docker-ce-18.06.0) and 

Singularity (v3.2.1). Since Singularity is supported cluster wide on GRNET’s ARIS System, 

Singularity runs were performed also on GPU nodes that are dual socket E5-2660 10C v3 with dual 

NVIDIA K40m GPUs. 

For container images of both Docker and Singularity, a Debian 9 image was created with the 

necessary dependencies. For both Docker and Singularity, the host MPI and CUDA environments 

were mounted during compilations and runs. All runs were performed under SLURM workload 

manager. 

The input dataset is the Case A of PRACE UEABS Benchmark Suite [2], which includes ~130,000 

atoms. This size of MD system seems to be the size of the majority of GROMACS runs on an HPC 

Centre. Version 2018.4 of GROMACS, that was the latest stable during benchmarks, was used in all 

runs. 

4.3.  Compilation procedure 

GROMACS typically selects the best SIMD instruction set to use at compile time on the compile 

machine. CPU features are detected automatically. It also gives the opportunity to enforce certain 

type of SIMD instructions for use or simply use the C/C++ kernels. This way one can emulate the 

compilation on another CPU type.  Binary compiled at a level of SIMD instructions do not run on 
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older CPUs that do not support it. On the other hand, binary is compatible with newer CPUs but with 

performance degradation. This is discussed in results section. 

In order to build a fully portable image that runs on any x86_64 CPU and use it everywhere without 

re-compilation, the C kernels, with compiler “best effort flags” should be used. Taking into account 

the evolution of CPU features of x86 architecture, SSE2 is available to all x86 CPUs (both Intel and 

AMD) during at least last decade. So instead of plain C/C++ kernels, the SSE2 SIMD set could be 

used as reference.  

For the compilation, the image gnu compilers were used. For Debian 9 image, they are gnu-6.3.0. 

The host compiler for bare metal compilation was gnu-6.4.0. For MPI and CUDA, host openmpi/2.1.6 

and cuda/9.2 were mounted in image, and path/library path were adjusted accordingly. For each type 

of SIMD instructions set and parallelization model (OpenMP, Hybrid MPI/OpenMP/CUDA) a 

different executable was created. These executables were used during containerized runs. 

We should note that an executable created for a certain SIMD set runs on newer CPUS that usually 

support older SIMD sets. On the other hand, an executable created on a recent CPU with auto CPU 

detection, cannot run on older CPUs. The performance is measured in [ns/day] units, that is an 

expression of the rate of execution, which is very similar to GFLOPS reported by Linpack [3]. 

All runs were performed under SLURM workload manager. The commands in SLURM script are: 
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Single Node runs 

singularity exec debian9.simg Runs/runsmpdebian.sh 

 

runsmpdebian.sh 

#!/bin/sh 

for i in 40 20 10 8 4 2 1; do \ 

export OMP_NUM_THREADS=$i 

../../Packages/Singularity/debian9-gcc630/C/bin/gmx_AVX2  mdrun \ 

      -s topol.tpr –deffnm\ 

      haswell.debian9.AVX2.OMP.$OMP_NUM_THREADS\   

      -cpt 10000 -ntomp $OMP_NUM_THREADS -nice 0 -nsteps 10000\ 

      -noconfout 

done; 

 

MPI + CUDA runs 

 

mpirun singularity exec -B /apps/parallel/openmpi/2.1.6/gnu\ 

-B /apps/compilers/cuda/10.1.168 \ 

../../debian9.simg  \ 

../../Packages/Singularity/debian9-gcc630/bin/gmx_AVX2_mpi_cuda \  

mdrun -s topol.tpr -deffnm \ 

AVX2.MPI.cuda.gpus.2.Nodes.$SLURM_NNODES.Tasks.$SLURM_NTASKS \ 

-cpt 10000 -nice 0 -nsteps 10000 -noconfout -gpu_id 01 -ntomp 

$OMP_NUM_THREADS 

We should note that in the above commands there is no –np or –hostfile specification for mpirun due 

to the fact that these variables are handled internally by SLURM. 

4.4.  Performance Results 

4.4.1. Single Core Performance 

Runs using Bare Metal, Docker and Singularity for all types of SIMD sets that are supported by the 

corresponding nodes were performed in serial. In fact, the OpenMP executables were used specifying 

OMP_NUM_THREADS=1 and the corresponding GROMACS command line argument for 

OpenMP threads. Single core performance is indicative of the relative performance and probable 

overhead resulting from the container framework, without any implication of the container on 

OpenMP. The single core results are presented in Figure 4.1, for Plain C, SSE2 and AVX_256 

kernels. Two main conclusions arise from Figure 4.1. 

• If the same SIMD set is used, there is no essential difference in performance between Bare 

Metal and containerized version of GROMACS. Test machines where both Docker and 

Singularity are available, support AVX_256 SIMD set - this is why results are presented up 

to this SIMD instructions set. 

• There is significant performance loss when using older SIMD (or plain C) kernels. In these 

benchmarks, the relative performance of GROMACS using C, SSE2 and AVX_256 is 1, 4.9, 

and 6.1 respectively. This means that the SSE2 is 4.9 times faster than C kernels, and 
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AVX_256 is 1.25 times faster than SSE2 or 6.1 times faster than plain C kernels. Since the 

performance of serial runs is not affected by container, the relative execution speed is this of 

Figure 4.1. 

 

 

Figure 6.1: Performance of GROMACS for test case A of PRACE UEABS [2], using Bare Metal, containerized 

with Docker and Singularity for three different SIMD versions. Runs on four sockets node (Ivybridge E5-4650 v2 

@ 2.40GHz). 

 

Going further, the same runs were performed on a more recent CPU supporting AVX2/FMA, but 

Docker was not available there – only Singularity. These results are presented in Figure 4.2. From 

this figure it seems that the relative performance is 1 : 4.8 : 6.1 : 7.8 in the corresponding columns, 

that is AVX2 kernels are 1.6 times faster than SSE2. Again, if AVX2 kernels are used within container 

there is no essential difference in performance when compared to bare metal. 
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Figure 6.2: Performance of GROMACS for test case A of PRACE UEABS [2], using Bare Metal and containerized 

with Singularity, for four different SIMD versions. Runs on Haswell dual socket E5-2660v3 @ 2.60GHz. 

4.4.2. Single Node / SMP Performance 

The next level of parallelization of GROMACS is the single node loop parallelization using OpenMP. 

Bare metal, containerized with Docker and Singularity runs were performed on a single four socket 

E5-4650 v2 @ 2.40GHz node using various number of OpenMP threads and the higher available 

SIMD set of CPUs (AVX_256). The performance results are presented in Figure 4.3. It seems that 

the performance is almost identical in all cases, although very small and not systematic deviations are 

present. 

 

Figure 6.3: Performance of GROMACS for test case A of PRACE UEABS, using Bare Metal, containerized with 

Docker and Singularity for the best possible SIMD instructions as function of OpenMP threads. Runs on four 

sockets node (Ivybridge E5-4650 v2 @ 2.40GHz). 
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4.4.3. Multi node Performance 

GROMACS uses MPI for the next level of parallelization. Of course, pure MPI can be used also on 

a single node. Communication is affected mainly by latency, while bandwidth has lower effect in 

scaling. For bare metal runs, the host MPI was used that leverages infiniband with RDMA for 

internode communication and shared memory for intranode communication. For Singularity runs, the 

host MPI was mounted and used in container. Although it is the same installation of MPI there are 

some differences. The host MPI has all driver libraries for infiniband at various places, while in 

container these drivers are not present. Although one can install these drivers too, it is not common 

for the end user to obtain, install, and probably configure these drivers. In addition, on another system 

other fabric drivers or versions may be used that makes this procedure difficult if not impossible to 

end users. In this case, the TCP transport through infiniband interface was automatically selected by 

openmpi for internode communication while shared memory was selected for intranode 

communication. 

Due to the small number of available nodes to run Docker, only bare metal and singularity runs were 

performed with MPI. For these runs the AVX2/FMA SIMD set was used. The performance results 

are presented in Figure 4.4. Note that on each node 20 MPI tasks were used. From Figure 4.4, it seems 

that the performance with one node is essentially the same between bare metal and singularity with 

singularity having marginally higher performance. When more than one nodes are used, the 

containerized runs have a speed up to eight nodes, but their performance is significantly lower than 

bare metal runs. With 16 nodes, bare metal runs are 4 times faster. This is attributed to the use of TCP 

transport for internode communication instead of the RDMA used in bare metal. 

 

 

Figure 6.4: Performance of GROMACS for test case A of PRACE UEABS, using Bare Metal, containerized with 

Singularity for the best possible SIMD instructions (AVX2) as function of Number of Nodes. Runs on Haswell dual 

socket E5-2660v3 @ 2.60GHz. 
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4.4.4. Multi node - Multi GPU Performance 

GROMACS supports also the use of GPUs with CUDA. It supports multiple GPUs per node. Since 

the GPU nodes have two NVIDIA K40m per node, the multi-level parallelization scheme was used: 

two MPI tasks per node, each task using ten OpenMP threads and one GPU. It is expected that the 

efficient scaling of GROMACS when using GPUs will be limited to lower number of nodes due to 

the GPU speed up of each MPI task. The results of these runs are presented in Figure 4.5. With 

number of nodes up to eight, the bare metal runs are 1.5 - 1.8 times faster than the Singularity runs. 

This is attributed to the effect of MPI using the TCP transport for internode communication. 

 

 

Figure 6.5: Performance of Hybrid MPI/OpenMP/CUDA GROMACS for test case A of PRACE UEABS, using 

Bare Metal, containerized with Singularity for the best possible SIMD instructions (AVX2) and GPUs as function 

of Number of Nodes. Runs on Haswell dual socket E5-2660v3. 

4.5.  Conclusions 

Two main ways of using the containers are identified. The first, that most users have in mind, is to 

have a single image running as is everywhere. The second is to use the image as a deployment 

platform that contains all the dependencies in the required version and compile the source for the 

target machine with the necessary compiler optimizations/SIMD kernels to reach the maximum 

performance. The single image running everywhere approach implies that one should use SIMD set 

(in kernels and compiler flags) that is portable across available HPC machines. At present, this is the 

SSE2 set. This lower optimization/SIMD set has a performance penalty that might be 62% of the bare 

metal performance in the case of running SSE2 executable on an AVX2/FMA machine. The 

performance penalty is expected to be higher when running on recent skylake CPUs. In addition, if 

the image is built on high end CPUs, it simply doesn’t run on older CPUs. 

When going to multi-node MPI runs, the performance tuning is more complicated. The single image 

running everywhere approach cannot be used unless one has the same versions of MPI libraries and 

related fabric drivers. Typically, in this case one needs to recompile the code with the available MPI 
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on target machine and probably install various drivers in container image, still facing performance 

degradation and limited scalability. 

Concluding, containers could be used efficiently mainly for single node runs. When containers are 

used as a development platform and the time-consuming code is compiled for target CPU the obtained 

performance is identical (or in some cases even higher) to this of bare metal case. In the case of multi-

node execution, it seems that a fully portable image without effort at low level (drivers, settings etc.) 

introduces performance penalty that can’t commonly be handled by the end user. By the end user 

perspective, it seems that single node runs are fine with containers. When moving to multi-node runs, 

it seems for the end user, that deeper knowledge and expertise is required to achieve bare metal 

performance with containers. 
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5. ICHEC Benchmarks 

5.1. WRF 

The Weather Research and Forecasting (WRF)  [4] Model is a mesoscale numerical weather 

prediction system designed for both atmospheric research and operational forecasting applications 

and is maintained by the National Centre for Atmospheric Research in the U.S. 

Its build system is a set of custom scripts which combined with a lot of dependencies on various 

libraries means that it can be difficult to compile and run successfully. This build difficulty is one 

reason why creating a container image of a particular version may be useful. In order to investigate 

performance differences between native builds and containerised builds, we will build the same 

version of WRF using identical compilers. MPI implementations and supporting libraries to be run 

on both bare metal nodes and via Singularity.  

5.2.  Benchmarking System 

All benchmark runs were performed on the ICHEC HPC system “Kay”. This system has various 

partitions but for WRF we only used the main distributed memory cluster partition. The relevant 

specifications of this cluster are: 

● Each node contains 2 x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors, 192 

GB of RAM  

● Interconnect is Intel Omnipath 100Gbit/s RDMA network 

● Lustre distributed filesystem on DDN SFA 14k hardware 

● Slurm Resource Manager 

● Centos 7 

● Singularity 2.6 

5.3. Benchmark Test Case 

The purpose of this benchmark is not to examine the performance of the application or hardware itself 

but rather to examine the relative performance of running it under the two different scenarios (i.e. 

with and without containers) on the same hardware. Hence, the test case used was one of the standard 

tests which comes with the source distribution of WRF, namely the Tropical Cyclone. The input files 

are contained in the directory WRF/test/em_tropical_cyclone and to run the benchmark we just need 

to initialise this test case:  

 

$ ../../run/ideal.exe 

 

The main WRF run can then be executed as: 

 
$ ln -s ../../run/wrf.exe wrf.exe 

$ mpirun ./wrf.exe 

https://ark.intel.com/products/120489/Intel-Xeon-Gold-6148-Processor-27-5M-Cache-2-40-GHz-
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5.4.  Build and Execution of Native, “Bare Metal” version 

In order to replicate as much as possible the full software stack used both natively and in the 

Singularity image, we used EasyBuild  [5] for both to provide all the dependencies required to build 

WRF. In particular, the same versions of gcc, netCDF, OpenMPI, etc could be replicated this way. 
The following commands were used to install EasyBuild using its own bootstrapping script and then 

use EasyBuild to install netCDF along with all of its dependencies which contain the full environment 

required to build WRF. 
 
$ python bootstrap_eb.py /ichec/home/staff/nwilson/work/easybuild 

$ export MODULEPATH=/ichec/home/staff/nwilson/work/easybuild/modules/all 

$ export EASYBUILD_INSTALLPATH=/ichec/home/staff/nwilson/work/easybuild 

$ export EASYBUILD_MODULES_TOOL=EnvironmentModulesC 

$ eb netCDF-Fortran-4.4.4-foss-2018b.eb --robot --module-syntax=Tcl 

 

Once EasyBuild has installed all of the necessary dependencies we can then load the corresponding 

environment modules and compile WRF using these packages: 

  
$ export MODULEPATH=/ichec/home/staff/nwilson/work/easybuild/modules/all 

$ module load netCDF-Fortran/4.4.4-foss-2018b 

$ export NETCDF_classic=1 

$ export NETCDF=/ichec/home/staff/nwilson/work/easybuild/software/netCDF-

Fortran/4.4.4-foss-2018b 

$ wget http://www2.mmm.ucar.edu/wrf/src/WRFV4.0.TAR.gz 

$ tar xzf WRFV4.0.TAR.gz 

$ cd WRF && ./configure <<< $'34\r1\r' 

$ /bin/csh ./compile em_fire 

 

The em_tropical_cyclone test case can then be run as outlined in the section above. 

5.5.  Build and Execution of Singularity version 

For details on how the Singularity image was created using EasyBuild, please refer to Chapter 4 - 

Image Workflow and Usage - of Deliverable 12.2 “Container-as-a-service Technical 

Documentation”. This image can be used easily to run on a single node but for MPI runs on multiple 

nodes, we need to have the container access external MPI libraries so it can use the OmniPath libraries 

and Slurm task launching. In this case we use the same EasyBuild version of OpenMPI used for the 

bare metal runs via bind mounting those directories into the container as follows: 

 
mpirun singularity exec -B 

/lib64,/ichec/home/staff/nwilson/work/easybuild/software:/opt/apps/easybu

ild/software /ichec/work/staff/nwilson/singularity_images/eb-wrf.img 

/opt/apps/WRF/main/wrf.exe 

5.6.  Results of Benchmark Runs 

The figure below shows the execution time in seconds for both Singularity and bare metal runs scaling 

from 1 to 8 nodes. Docker was not tested because it was not available on the cluster. Again, the point 

http://www2.mmm.ucar.edu/wrf/src/WRFV4.0.TAR.gz
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of interest here is not the absolute performance but rather the relative performance between both 

configurations. As can be clearly seen, for this particular test case there is a negligible performance 

impact for running WRF via a Singularity container compared with native, bare metal performance. 
 

 

Figure 5.1: Comparison of WRF execution time on bare metal and singularity, as function of number of nodes. 
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6. BSC Benchmarks 

6.1.  Benchmarks using Lenox Cluster 

We have used the Lenox cluster for comparing containerization technologies’ performance. Lenox is 

a four computation nodes cluster where we have sudo capabilities, thus it is ideal to install and test 

different containers like Docker or Shifter, which require a more complex installation than 

Singularity.  

Each Lenox’s node has two sockets with one Intel Xeon E5-2697v3 processor. In other words, it has 

14 cores per socket and 28 cores per node. In Figure 6.1, the topology of a compute node can be 

graphically appreciated. The network interconnecting the nodes is 1 Gigabit Ethernet over TCP. 

Regarding the software, it runs Linux kernel 3.10.0 with Open MPI 1.10.4 libraries. Our tested 

container implementations are: 

● Docker 1.11.1 

● Singularity 2.4.5 

● Shifter 16.08.3 (BT-MZ and Alya) / 18.03.1 (HPCG) 

 

Newer Singularity 2.X versions do not have relevant performance improvements. With Shifter, we 

upgraded its version to 18.03.1 with HPCG because during one maintenance of Lenox the 

ImageGateway of version 16.08.3 stopped working and was unable to download Docker images.  

 

 

Figure 6.1: Topology of a Lenox cluster compute node 
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6.2.  Benchmarks using MareNostrum4, CTE-POWER and ThunderX 

We have used MareNostrum4, CTE-POWER and ThunderX to benchmark Alya using containers 

through different HPC architectures. The chosen container implementation has been Singularity 

because it is easy to install and secure, while Docker and Shifter present problems to be deployed in 

production. Table 6.1 summarizes the characteristics of each cluster. MareNostrum4, CTE-POWER 

and ThunderX do not have the same Singularity version because we were not responsible of its 

installation. Despite this, the 3 versions are very similar and should not present significant 

performance differences.  

Table 6.1: Summary of MareNostrum4, CTE-POWER and ThunderX characteristics 

 MareNostrum4 CTE-POWER ThunderX 

Number of Nodes 3.456 52 4 

Sockets per Node 2 2 2 

Cores per Socket 24 20 48 

CPU Intel Xeon Platinum 

8160 

IBM Power9 8335-

GTG 

Custom made Armv8-a 

cores within CN8890 

sockets 

CPU Architecture x86 Power9 Armv8-a 

Network - Intel Omni-Path 100 

Gbit/s 

- Ethernet 10 Gbit/s 

- Mellanox EDR 

Infiniband 100 Gbit/s 

- Ethernet 10 Gbit/s 

- Ethernet 40 Gbit/s 

Linux Kernel 4.4.12 4.11.0 4.4.3 

Singularity 2.4.2 2.5.1 2.5.2 

 

6.3.  Image building 

In order to ensure that Docker, Singularity and Shifter containers have the same software stack, first 

we have built a common container image using Docker. Within this common image, we have all 

necessary compilers, MPI libraries and BSC third-party tools (i.e. programming model and 

performance analysis tools) to install and execute our programs. Once the base image is built, we end 

the image building process installing our applications with each container technology. We decided to 

end the building process by converting the final image from Docker to the specific container format 

to better leverage implementation features. We summarize the container image building process in 

Figure 6.2. 
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The final container image has the following software 

stack: 

● Ubuntu 16.04 

● Open MPI 1.10.4 

● GNU 4.8.5 compilers 

● BSC third-party tools 

○ Nanos++ runtime [6] 

○ Mercurium compiler [7] 

○ DLB library [8] 

○ Extrae  [9] 

● The application to be tested 

 
 

 

 

 

 

 

Figure 6.2: Building process of container images.    

 

6.4.  Application deployment 

For our benchmarking with Alya, BT-MZ and HPCG, we have decided to perform very specific tests. 

In Lenox or ThunderX we cannot study scalability performance of containers, because with only 4 

computation nodes our results would not represent real HPC use cases. Instead, we are going to 

evaluate containers’ performance exploiting all of Lenox’s resources (i.e. using all cores available) 

with different distributions of MPI ranks and threads per rank (see Table 6.2), thus evaluating the 

performance influence of changing these parameters. 

Table 6.2: Tested distributions of ranks MPI / threads 

Total number of MPI processes MPI processes per node Threads per MPI process 

4 1 28 

8 2 14 

16 4 7 

28 7 4 

56 14 2 

112 28 1 
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6.4.1. Bare-metal 

Application’s deployment using bare-metal is straightforward, we just need to copy and compile the 

code avoiding the extra steps needed when using virtualization. However, since Lenox cluster does 

not have any workload manager as SLURM or similar, we have launched our applications manually 

through mpirun command. In essence, the complete command has the following structure: 

 
$mpirun -np $N_MPIS --map-by slot:PE=$N_THREADS --bind-to core --mca 

btl_tcp_if_include $NET_ADDRESS -hostfile $HOST $APP_BIN 

 

Where $N_MPIS indicates the number of ranks MPI we want, $N_THREADS indicates how many 

threads possess each rank, $NET_ADDRESS specifies our network, $HOST is the path to our host file 

and finally $APP_BIN is our application binary execution file.   

6.4.2. Docker 

Application deployment with Docker is more complex, since its aim is to fully isolate containers from 

the host. Our first challenge consists in creating a common network for our Dockers, so they can 

exchange MPI messages. Once the network is operative, we must deploy a cluster of Docker 

containers and start the application within one container. 

For inter-container communication across multiple hosts, we have used multi-host overlay 

networking with Etcd [10] as our external key-value store [11]. After setting up Etcd environment in 

each node of Lenox and creating the overlay network through Docker commands, we are able to 

attach our container instances to the overlay network at spawn time. 

To execute the application, first it is necessary to deploy our Docker cluster. For this purpose, we 

launch one container instance in each node of Lenox. Thanks to the previous step (the network 

creation), all containers are able to communicate between them. At last, it only remains to connect to 

one running container and initiate the MPI execution within Docker. 

6.4.3. Singularity and Shifter 

Because both Singularity and Shifter containers intend to be as integrated with the host as possible, 

their deployment is very simple. We only needed to execute mpirun from one node of Lenox 

specifying to run the appropriate container image. After invoking the MPI runtime, the host and the 

container implementation will manage the spawn and message communication of all application’s 

MPI processes. 

6.5.  ALYA 

Alya is a large-scale in production application for multi-physics numerical simulation used at BSC to 

evaluate container performance with real scientific applications. Written in Fortran and parallelized 

using MPI and OpenMP, Alya is a highly parallel code designed to run efficiently on high-

performance computers [12], [13], [14], and it is also part of the UEABS [15] (Unified European 

Applications Benchmark Suite), a selection of 13 scalable, portable and relevant codes for the 

scientific community, which made it a perfect candidate for our benchmarking purposes. 

 

https://paperpile.com/c/g3ym3k/bVFd
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Our input for Alya consists in a use case simulating a pulsatile artery over a cavity filled with fluid 

(blood). This fluid-structure interaction (FSI) is depicted in Figure 6.3. The physical properties of the 

fluid are obtained via Computational Fluid Dynamics (CFD) and an Arbitrary Lagrangian-Eulerian 

(ALE) scheme, while Computational Solid Mechanics (CSM) are used to model the solid. Figure 6.3 

(left) shows what this simulation looks like in a time step, and Figure 6.3 (right) is the scheme of the 

problem we want to solve.  

  

 

a) Depiction of the simulated use case. In the 

left side is drawn the solid (artery) and in the right 

the fluid (blood). 

b) Geometry used for the problem. The left side shows the 

short axis and the right side a section of the long axis. 

Figure 6.3: Representations of our Alya use case. 

 

  

Algorithm 1 shows the solving strategy used inside Alya. To solve 

the FSI problem, CSM(fα) represents the solver for the solid 

mechanic subdomain and ALE + CFD(dα) the solver for the fluid 

dynamics in an ALE mesh. The fluid and solid parts are simulated 

in a block-serial way with a Multiple Program Multiple Data 

strategy (MPMD), that is, each physical model is solved with its 

own instance of Alya. Besides, a convergence acceleration scheme 

𝜑𝐺𝑆is used to reduce the number of coupling iterations.  

 

From BSC’s past experience using Alya, we know that CPU and network 

capability are what mainly affects Alya’s performance with this use case.  
 

6.5.1. Methodology using Alya 

The Alya benchmarking is divided in two parts. First, we ran Alya in Lenox to make a comparative 

between different container implementations (Docker, Singularity and Shifter). Then, we executed 

Alya using only Singularity containers in MareNostrum4, CTE-POWER and ThunderX to study the 

performance obtained when using containers through different HPC architectures.  
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Because the FSI case requires a considerable amount of execution time to complete, and we had not 

available large amounts of compute resources in Lenox, CTE-POWER (only 16 nodes are available 

to us) and ThunderX for the kind of scaling we want to reach, we decided to run two versions of this 

simulation, depending on the machine capacity: 

● CFD: simulation of the fluid domain only. Requires 2.58 times less execution time than the 

complete FSI simulation. 

● FSI: simulation of the fluid-structure interaction. The real use case running the fluid and solid 

domains with a Multiple Program Multiple Data strategy.  

We used the CFD version when benchmarking in Lenox, CTE-POWER and ThunderX, whereas the 

FSI has been used in MareNostrum4 supercomputer, since we had access to 256 compute nodes 

(12.288 cores). 

Production simulations of our use case usually can be run for thousands of time steps. We broke down 

the duration of each time step in ti=ts+tm,  ti = ts + tm, measuring the two main computational 

phases: 𝑡𝑠, the duration of the solver, which presents a high number of MPI collectives, and 𝑡𝑚, the 

duration of the matrix assembly, that does not have MPI communication nor synchronization. Given 

the fact that all time steps are algorithmically homogeneous, we can study the average phase durations 

as follows: 

  

Where: 

• Average Time step duration:    

• Average Solver time:                 

• Average Assembly time:           

Our early experiments show that n = 20 is a good trade-off between overall simulation time and 

statistical accuracy. Figure 6.4 shows how the simulation behaves. 
 

 

Figure 6.4: Behaviour of our Alya simulation 
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6.6.  BT-MZ 

BT-MZ 3.3.1 [16] belongs to the set of NAS Parallel Benchmarks, which are derived from 

computational fluid dynamics (CFD), focused on evaluating the parallel performance of 

supercomputers. From all the set of NPB, we have chosen BT-MZ (Block Tri-diagonal solver Multi-

Zone) [17], [18] as it is designed to exploit multi-level parallelism and presents uneven workload 

allocation (i.e. load imbalance), which can be a performance killer. For these reasons, we used this 

benchmark to evaluate workload allocations with containers and the Dynamic Load Balancing (DLB) 

library in [19], [20] and now we will use it to benchmark containers. CPU, network and load 

imbalance are what most affect to BT-MZ’s performance. 

The Block-Tri-diagonal application benchmark solves a three-dimensional mesh of discretized 

Navier-Stokes equations. In order to act more like in production codes, NPB divides the mesh into 3-

dimensional (x, y and z) zones across the processes. Particularly in BT, the mesh is partitioned such 

that zone sizes are unequal and their size grows in one direction. As a result, the application presents 

workload imbalance, though it is mitigated within the initialization when distributing zones among 

MPI ranks. 

Each iteration of BT is composed by 6 functions: 1) an exchange of data with neighbour ranks, 2) 

computation of the right-hand side (rhs) of the matrix, solve the equations in 3) x-, 4) y- and 5) z- 

directions and 6) accumulate the results. Loops are parallelized with the OpenMP pragma PARALLEL 

DO [21]. Data between MPI ranks is exchanged with non-blocking sends and receives while 

processes are synchronized with waitalls. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

do step 1, niter 

 call exch_qbc 

 do zone 1, num_zones 

  call compute_rhs 

  call x_solve 

  call y_solve 

  call z_solve 

  call add 

 end do 

end do 

Algorithm 2. BT-MZ’s code structure. 
6.6.1. Methodology BT-MZ 

We have compiled NPB BT-MZ 3.3.1 benchmark with gfortran 4.8.5 because it was the latest version 

of the Fortran compiler available in Lenox. We have executed the hybrid MPI+OpenMP version of 

BT-MZ (to benchmark both programming models) using the class C problem size with the default 

iteration configuration. BT-MZ offers different problem sizes, from the S size (the smaller) to the F 

(the bigger). The C problem size is the medium one, which allowed us to repeat the executions without 

spending much time. After each execution of BT-MZ, we have collected its execution time and total 

Mop/s reported by the benchmark.  
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BT-MZ has been executed 50 times, which is a good choice between statistical accuracy and overall 

execution time, in Lenox with each technology: bare-metal, Singularity, Shifter and Docker. Each 

technology has used Open MPI 1.10.4 libraries (the latest version available in Lenox) and TCP over 

Ethernet network to pass inter-node MPI messages. 

6.7.  HPCG 

The (HPCG) benchmark [22], [23] is intended to emulate scientific applications which solve Partial 

Differential Equations (PDEs). HPCG implementation is very similar to the well-known High-

Performance LINPACK benchmark, except that HPCG focuses on stressing the memory design. 

HPCG benchmark tries to cover the most common communication and computation patterns 

emphasizing on high-performance collectives and local memory design. 

HPCG performs a symmetric Gauss-Seidel preconditioned conjugate gradient solver on a sparse 

linear system. In the setup phase, HPCG generates a synthetic discretized three-dimensional equation 

model. This three-dimensional matrix will be decomposed with a conjugate gradient method for the 

resulting sparse linear system. Afterward, HPCG performs a loop where it operates with the sparse 

system as represented in Algorithm 3. 
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                                                      Algorithm 3 

HPCG is a valuable and representative benchmark because of its adoption in the Top 500. As HPCG 

is designed to measure the performance of basic operations in supercomputing and to stress the host, 

we believe that its benchmarking is both valuable and authentic for possible use cases. 

6.7.1. Methodology HPCG 

HPCG has been compiled using g++ 4.8.5 compiler with -O3 optimizations and Open MPI 1.10.4 

libraries (the latest version of the g++ compiler available in Lenox and the default optimization flags 

of the configure). In addition, HPCG is compiled with both MPI and OpenMP features enabled. At 

last, we executed 25 times HPCG in Lenox with each technology (bare-metal, Singularity, Shifter 

and Docker) specifying local subgrid dimensions of 120 for x, y and z-axis because it offered a good 

trade-off between the number of repetitions and elapsed time of the execution. After each execution 

we collected the log file generated with its corresponding metrics. 

6.8.  Comparison between containers 

In this Section, we compared Docker, Singularity and Shifter container implementations in the Lenox 

cluster, in terms of performance having as a reference bare-metal executions. With each technology, 

we tested various MPI+OpenMP distributions to check their influence in performance, by collecting 

at the end of the execution the metrics reported by the application. Our containers used the same MPI 

libraries versions as the host, which are Open MPI 1.10.4. 

6.8.1. Alya 

In Figure 6.5, we display the average step duration of Alya with every technology (bare-metal, 

Singularity, Shifter and Docker) using all 112 cores of Lenox. In the x-axis we represent the different 

MPI+OpenMP distributions, and in the y-axis the time in seconds with its standard deviation. Here, 

HPC designed containers (i.e. Shifter and Singularity) are able to match bare-metal performances 
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maintaining similar variations in any distribution of processes. In the case of Docker, in 8x12 (i.e. 8 

MPI ranks and 12 OpenMP threads) and 16x7 distributions, its performance is equal to the other 

technologies, but from 28x4 onwards, it experiences some sort of overhead which is most notable in 

112x1.  
 

 

Figure 6.5: Average step duration time of Alya in Lenox. 

 

We are able to better understand this performance difference analysing the two phases of the 

simulation separately. In Figure 6.6, we show the elapsed time of the matrix assembly phase and in 

Figure 6.7 the elapsed time of the solver phase. The axes of both charts display the same information 

as in Figure 6.5.  

As we explained before, the assembly phase is computer intensive and does not contain MPI 

communication. Therefore, Docker, Singularity and Shifter containers do not add any significant 

overhead to the computational performance, and what is more, the performance obtained is identical 

matching almost perfectly their means and variations in all our process distributions. On the other 

hand, inspecting the solver time in Figure 6.7, it is clear that the main source of performance loss or 

variation when using containers is communication. The solver phase contains a high amount of MPI 

collective communications, being this the reason for the performance loss of the Docker container 

since its containers use here an extra network layer (the virtual network we deployed).   
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Figure 6.6: Average assembly time of Alya in Lenox. 

 

Figure 6.7: Average solver time of Alya in Lenox. 
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6.8.2. BT-MZ 

Figures 6.8a and 6.8b show the performance obtained from BT-MZ. In both charts, the x-axis 

represents the MPI+OpenMP distribution tested, whereas the y-axis of Figure 6.8a displays the 

average execution time (less is better) and the y-axis of Figure 6.8b the average Gop/s obtained 

(109operations per second, more is better) with their standard deviation. 

 

   a) Average Execution time.          b)  Average operations per second. 

Figure 6.8: BT-MZ performance in Lenox. 

Thanks to these figures, we can appreciate the performance difference between our 4 execution 

environments (bare-metal, Singularity, Shifter and Docker). The execution time difference reported 

by Figure 6.8a between bare-metal, Singularity and Shifter with all distributions is minimal. In Figure 

6.8b, we can see again how bare-metal and the HPC designed containers (Singularity and Shifter) 

reach almost identical performances in operations per second. Finally, it is evident how Docker’s 

performance gets worse as we scale in the number of MPI processes: in 4x28 its performance matches 

the other technologies, but from there, its execution time  

This performance degradation is due to the MPI communications as we could check when enabling 

the detailed timers of BT-MZ. In Table 6.3, we expose the profiling of one BT-MZ execution with 

each distribution and technology. Table 6.3a shows the time in seconds that BT-MZ spends in CPU 

and MPI communications phases, whereas Table 6.3b shows the same as a percentage of the total 

execution time. As we can notice in Table 6.3a, the time BT-MZ spends with Docker in 

communications tends to duplicate linearly with the duplication of the number of processes. For 

instance, from 28x4 to 56x2 the communication time increases 28,73 seconds, and from 56x2 to 

112x1 it grows again 65,09 seconds. This increase, however, does not happen in the CPU time, which 

maintains similar to the other technologies. On the contrary, the obtained metrics with bare-metal, 

Singularity and Shifter are alike and do not present such a drastic increase in the communication 

phase. Given the fact that the only difference between Docker and the other technologies is the way 

it is deployed, we assume that this overhead is caused by the virtual network Docker is using here. 
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Table 6.3: BT-MZ profiling with different distributions and technologies 

 
a) Time (seconds) that BT-MZ spends in CPU and MPI communications 

 

 
b) Percentage that BT-MZ spends in CPU and MPI communications 

6.8.3. HPCG 

Figure 6.9a displays the average GFLOPS1 obtained by HPCG in Lenox. As with previous 

benchmarks, in the x-axis we are testing various MPI+OpenMP distributions, and the y-axis shows 

the average GFLOPS with its standard deviation. These results follow the same pattern as with BT-

MZ, since Singularity and Shifter match bare-metal performances, while Docker gets worse GFLOPS 

as we increase the number of processes. In these executions, the 112x1 distribution presents two 

anomalies: the bare-metal performance is significantly worse than Singularity or Shifter 

(approximately 5 GFLOPS, 16,6% of relative difference with respect to Singularity); and the standard 

deviation in this distribution is very large except with Docker. 

Inspecting more this specific case (112x1), we have seen that the cause of this performance difference 

between bare-metal and containers is the bandwidth. In Figure 6.9b we show the average bandwidth 

in GB/s each technology gets. The bar plot appears to be identical of Figure 6.10a, nevertheless, this 

bandwidth reported by the application is the sum of the network and memory, so it is not clear which 

component misbehaves.  

With further analysis of the metrics reported, we found that only one function  

(ComputeDotProduct_ref) of HPCG presents different execution times in bare-metal and within 

containers. This function performs the scalar product of two vectors and has involved one 

MPI_Allreduce(), an MPI collective communication function. For this reason, we believe that the 

performance difference of 112x1 is due to network communications through MPI. Anyway, we were 

still unable to find the ultimate cause of this network bandwidth difference in the bare-metal case, 

because the Lenox cluster was decommissioned during the final stages of benchmarking. Though, we 

suppose that this might be due to the difference in the compiler libraries available in the bare-metal 

 

1 Thousands of millions (109) floating point operations per second. 
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system (Red Hat Enterprise Linux 7 distribution) and the containerized environment (Ubuntu 16.06 

distribution). 

Figure 6.9: Performance of HPCG in Lenox. 

6.9.  Comparative Conclusions 

We have tested Docker, Singularity and Shifter with 3 different applications, one of them a real HPC 

multiphysics simulator, Alya. Every benchmarking has showed that the HPC designed containers 

(Singularity and Shifter) can match either the CPU, network or memory bare-metal performances. In 

addition, these containers also have proved that their performance compared with bare-metal does 

not get worse when deploying them with different MPI+OpenMP configurations. On the contrary, 

though Docker containers do not add overhead to the CPU nor memory usage, their network 

performance seems to be very bad when scaling in the number of processes due to its deployment 

complexity and level of isolation. In regards on how to solve this Docker issue, it could be possible 

to explore other alternatives when deploying large MPI applications using container orchestration 

software (like Kubernetes) or searching other ways to interconnect Docker containers.  

The containers comparative with Alya, along with more results (deployment overhead comparison) 

[24] was presented at the 2019 IEEE International Parallel and Distributed Processing Symposium 

(IPDPS). 

6.9.1. Portability and Scalability Evaluation of Containers 

Using Singularity, we executed Alya through 3 different state-of-the art HPC systems 

(MareNostrum4, CTE-POWER and ThunderX) and studied its performance. Unlike in the 

comparison between containers, here we have executed the pure MPI version of Alya because we 

noticed that the number of threads each process has does not alter the performance.  
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Having in consideration that MareNostrum4 and CTE-POWER have high-performance MPI 

networks, we decided to test two different deployment strategies with Singularity. 

● Generic container: we built a container image with a custom set of libraries installation (e.g. 

MPI). This container is easier to build since the user ignores the characteristics of hosts, but 

in exchange this image is unable to leverage hardware specific components like GPUs, high-

performance networks, etc. 

● Integrated container: we built a container image which is able to load at runtime the host’s 

MPI libraries. This image brings more work to be built as the user needs to identify the host 

MPI libraries and prepare the container to load them, as can be seen in [25]. However, this 

container leverages the optimal hardware of its host. 

The integrated container is made to leverage the Intel Omni-Path and Mellanox Infiniband networks 

of MareNostrum4 and CTE-POWER respectively, whereas the generic container is limited to 

communicate through the generic Ethernet network of its corresponding hosts. 

MareNostrum4 

In MareNostrum4 we had available up to 256 computational nodes, so we decided to perform a strong 

scalability test running the FSI case of Alya. We show the results obtained in Figure 6.10 where the 

x-axis displays the number of nodes we used in each execution, and the y-axis the speedup each 

version of Alya obtained with respect to its initial execution with 4 nodes. We can see clearly how 

the integrated container reaches bare-metal speedups with any number of resources, while the generic 

container only can do this up to 32 nodes. With more than 32 nodes, the generic container diverges 

from the ideal speedup, losing performance starting from 64 nodes. Actually, we were unable to run 

the generic container with 256 nodes because some of its processes could not establish connection 

with their MPI neighbours, freezing the execution of the application inside when it reaches an MPI 

barrier. Since the generic container is using the TCP protocol for MPI communications, which 

implements a connection time out, the more we saturate the network increasing the amount of MPI 

processes, the more prone are their sockets to suffer this error. Since we do not have the rights to 

increase the TCP “connection time out” time in MareNostrum4, we could only repeat our executions 

hoping to avoid this issue, but with more than 200 nodes it was too unlikely to happen.  
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Figure 6.10: Alya FSI strong scalability test in MareNostrum4 

 

CTE-POWER 

In Figure 6.11 we display the average elapsed time of each container version of Alya. The x-axis 

shows the number of nodes we have used and the y-axis the time in seconds. We can appreciate how 

the integrated container gets close-to bare-metal execution times in all the chart, whereas the generic 

container experiences some sort of overhead which increases as we use more nodes. 

 

Figure 6.11: Average elapsed time of Alya CFD in CTE-POWER. 
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To better understand why the generic container performs better we display Figure 6.12, where Figure 

6.12a shows the average time of the assembly phase and Figure 6.12b of the solver phase. In the 

assembly phase, the time difference between bare-metal and the generic container is noticeable, but 

remains constant with any number of nodes and is not significantly worse. It is in the solver phase 

where most of the overhead appears, because increasing the number of nodes also increases the solver 

phase time of the generic container. This fact is obvious, since the generic container is unable to use 

the Mellanox EDR network of CTE-POWER, and therefore, as we increase the number of processes, 

we are congesting the Ethernet network, which is not prepared for such workloads.  

Figure 6.12: Alya CFD performance of its phases in CTE-POWER. 

ThunderX 

In Figure 6.13, the average time step from the executions of Alya CFD in ThunderX are shown. The 

results we got here are specially interesting because in this case all three versions of Alya get the 

exact same elapsed time, even the generic container, with any number of nodes. The reason for this 

is that ThunderX does not possess any high-performance network, or in other words, it does not have 

specialized hardware that our containers need to leverage explicitly. Therefore, since all three 

versions are executing Alya with the same hardware resources, they get the same results.  
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Figure 6.13: Alya CFD average time step in ThunderX. 

6.9.2. Portability and Scalability Conclusions 

We have performed a large scalability test in MareNostrum4 using a real HPC use case (Alya) and 

tested containers’ performance with two state-of-the art HPC architectures (IBM Power9 and Armv-

8a). Because some of our testbeds possessed specialised hardware, i.e. the high-performance 

networks Intel Omni-Path of MareNostrum4 and Mellanox EDR Infiniband of CTE-POWER, we 

have deployed two types of containers: the integrated one, capable of leveraging its host specific 

hardware; and the generic one, which is only prepared to use the by default hardware components. 

We have demonstrated that containers can reach bare-metal performance in any case, with small or 

very large number of resources. Even the generic container can do that if the host does not present 

hardware that requires further configuration. Containers do not add CPU, memory or network 

overhead, at least when accessing the hardware. It might occur that executing applications with 

containers make them perform worse, but actually this is more related with the software within the 

built container (the libraries, whether the applications are configured with optimization flags, drivers 

to use high-performance networks or GPUs, ...) rather than the virtualization overhead, which in HPC 

designed containers like Singularity tends to be zero.  

This portability and scalability study was presented at the 2019 IEEE International Parallel and 

Distributed Processing Symposium (IPDPS) [24]. 
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7. CINECA Benchmarks 

7.1.  Benchmark System 

The cluster used for testing containerization technologies is the Tier-0 system MARCONI [26] 

Lenovo NeXtScale platform co-designed by CINECA. It offers the scientific community a 

technologically advanced and energy-efficient high performance computing system. The partition of 

MARCONI used for the testing is named “A3 partition” which is a Lenovo Stark, made by 21 racks, 

and more than 2’300 compute nodes, each of them equipped with 2 x 24-cores Intel Xeon 8160 CPU 

(Skylake) at 2.10 GHz and 192 GB of RAM  DDR4.  

This supercomputer takes advantage of the Intel® Omni-Path Architecture, which provides the high-

performance interconnectivity required to efficiently scale out the system’s thousands of servers. A 

high-performance Lenovo GSS storage subsystem, that integrates the IBM Spectrum Scale™ (GPFS) 

file system, is connected to the Intel Omni-Path Fabric and provides data storage capacity. 

7.2.  Image building 

Following the usage scheme proposed in D12.1 [27], the Singularity image files have been built on 

an external server and then copied on MARCONI cluster.  

A "built from scratch" approach has been followed. In some cases, it has been chosen to install all the 

needed software at the same time using a single recipe file. Other times, a "Matryoshka" approach 

has been chosen, in which a singularity container has been built starting from another one previously 

built and then adding other software. 

Two codes have been tested, Quantum Espresso [28] and Tensorflow [29].  

7.3. TENSORFLOW 

Tensorflow [29] is a widely used open source machine learning library for research and production. 

It is an end-to-end open source platform for machine learning. It has a comprehensive, flexible 

ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art 

in Machine Learning and developers easily build and deploy Machine Learning powered applications. 

TensorFlow was originally developed by researchers and engineers working on the Google Brain 

team within Google's Machine Intelligence Research organization for the purposes of conducting 

machine learning and deep neural networks research. The system is general enough to be applicable 

in a wide variety of other domains, as well. 

7.3.1. Results  

According to the philosophy of reproducibility and sharing that characterize the container utilization, 

it has been decided to use the pre-built, official released container. The containers built have been 

bootstrapped from the Docker ones available in the official Docker Hub repository of Tensorflow 

community [30]. 

The version of Tensorflow used is the 1.10.0 for CPU.  
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A singularity container was built, bootstrapping from that available in Docker hub and adding the 

HOME path directory of the cluster used and a test directory that was used to bind the directory with 

the results physically located on the cluster. So, the recipe used to build the container was:  

 
***************************************************** 

Bootstrap:docker 

From:tensorflow/tensorflow:1.10.0 

%post 

mkdir –p /test 

chmod 777 –R /test 

 

mkdir –p /marconi 

chmod 777 –R /marconi 

***************************************************** 

 

The container has been built using Singularity 3.0.2 version, the same also available as a module on 

MARCONI cluster. 

Both for bare metal and container tests, five different neural networks have been considered: AlexNet 

[31], googLeNet [32], InceptionV3 [33], ResNet-50 [34] and VGG16 [35]. The dataset was ImageNet 

[36] (synthetic) and two different batch sizes were analysed: 32 and 64. The tests have been repeated 

3 times and averaged on the set of data. All the runs have been executed in a single node of 

MARCONI Sky Lake. 

The number of images per second is reported in the Figures 7.1 and 7.2. The batch size being fixed, 

each histogram shows the number of images per second computed in each neural network model 

described above. 

As shown, important overhead in the execution of containerized run is introduced using the container 

instead of the bare metal application, because tensorflow inside container is not optimized for the 

architecture used, for portability reasons. In fact, on the output of the containerized run is written.  

 

“[...] tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU 

supports instructions that this TensorFlow binary was not compiled to 

use: AVX2 AVX512F FMA“  
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Figure 7.1: Number of images per second computed in ResNet-50, AlexNet, VGG16, InceptionV3 and GoogleNet 

model on a single MARCONI Sky Lake node. The batch size used is 32, the dataset is ImageNet - synthetic 

 

 

Figure 7.2: Number of images per second computed in ResNet-50, AlexNet, VGG16, InceptionV3 and GoogleNet 

model on a single MARCONI Sky Lake node. The batch size used is 64, the dataset is ImageNet - synthetic 

 

7.4.  QUANTUM ESPRESSO 

Quantum Espresso [28] (QE) is an integrated suite of Open-Source computer codes for electronic-

structure calculations and materials modelling at the nanoscale. It is based on density-functional 

theory, plane waves, and pseudopotentials. 
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As manifest in the official page, Quantum Espresso has evolved into a distribution of independent 

and inter-operable codes in the spirit of an open-source project. The QE distribution consists of a 

“historical” core set of components, and a set of plug-ins that perform more advanced tasks, plus a 

number of third-party packages designed to be interoperable with the core components. Researchers 

active in the field of electronic-structure calculations are encouraged to participate in the project by 

contributing their own codes or by implementing their own ideas into existing codes. 

QE is an open initiative, in collaboration with many groups world-wide, coordinated by the QE 

Foundation. Present members of the latter include Scuola Internazionale Superiore di Studi Avanzati 

(SISSA), the Abdus Salam International Centre for Theoretical Physics (ICTP), the CINECA 

National Supercomputing Center, the Ecole Polytechnique Fédérale de Lausanne, the University of 

North Texas, the Oxford University. Courses on modern electronic-structure theory with hands-on 

tutorials on the QE codes are offered on a regular basis in collaboration with ICTP. 

The following calculations can be done using QE:  

● Ground-state calculations 

● Structural Optimization, molecular dynamics, potential energy surfaces 

● Electrochemistry and special boundary conditions 

● Response properties (DFPT) 

● Spectroscopic properties 

● Quantum Transport  

The application runs on almost every conceivable current architecture: from large parallel machines 

(IBM SP and BlueGene, Cray XT, Altix, Nec SX) to workstations (HP, IBM, SUN, Intel, AMD) and 

single PCs running Linux, Windows, Mac OS-X, including clusters of 32-bit or 64-bit Intel or AMD 

processors with various connectivity (gigabit ethernet, myrinet, infiniband…). It fully exploits math 

libraries such as MKL for Intel CPUs, ACML for AMD CPUs, ESSL for IBM machines. 

QE software can be downloaded at [37]. A GPU-enabled version is also available. 

7.4.1. Results 

In the presented tests, pure mpi version of QE has been used. At the beginning of a QE simulation, 

the real space domain is distributed among the mpi tasks using collective mpi communications. After 

such subdivision, each task executes electronic structure calculations with linear algebra routines. 

Then the date are gathered to compute the total energy of the system. If it is over the chosen energy 

threshold, the data are again split among processors and new computation are done. This cycle is 

repeated until the total energy convergence. So, in QE there are both intensive communications 

among tasks and intensive linear algebra calculations.  

Our tests were focused mainly on a performance comparison among bare-metal and container 

execution on MARCONI using different compiler and network drivers. So, two containers have been 

built and used for test: one that uses licensed software (Intel MPI compiler) and takes care of the fact 

that on MARCONI the Intel OmniPath network is available among compute nodes. The other, 

instead, is totally free of licenced software, and a generic network driver has been installed.  

Finally, in both the two containers, all the needed environment variables have been set in the 

“%environment” section of the Singularity recipe, in order to be available at run time.  
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Three tests have been done with such containers. The result for Test case 1 and Test case 2, described 

in the next section and already showed in Deliverable 12.3 of HPC-Europe3 project [38], are here 

summarized. Moreover, some comments about QE code structure and about the mineral used are 

provided. The third test executed was focused in scalability performance by increasing the number of 

nodes used during the simulation. The tests have been accepted at the “1st International Workshop 

on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE 

HPC)”.  

 

Test case 1 

The version of QE used is 6.3, compiled with Intel parallel studio 2018 - update 4. The container has 

been built using Singularity 3.0.1.  

In the containerized version, the Intel OmniPath driver has also been installed, with the same version 

that on MARCONI SkyLake where the tests have been made, i.e. 10.5.0.0-140.  

For the tests, we used a small and a larger slab of the same material: the Zirconium Silicide [38]. Such 

structure has been extensively studied within QE official benchmarks [39] because it has a periodic 

lattice and it easily converges at its total energy ground state. Moreover, since it is made by atoms 

with many electrons, to simulate such material, hundreds GBs of RAM are needed, that can be found 

in a HPC cluster.  

We used two different slab of the same structure, to leverage the scalability of the RAM used during 

the computation. The number of atoms chosen in such slabs depends on the symmetry of the mineral.  

More precisely the dimension of the slabs is:  

• small: 24 atoms in total with a K-point mesh of 6 x 19 x 13 

• big: 108 atoms in total with a K-point mesh of 6 x 6 x 5 

 

Pure MPI Quantum Espresso simulations are reported in the two graphs below, Fig. 7.3 and 7.4 up to 

10 Sky Lake nodes, i.e. up to 480 MPI tasks. The comparison between the application performance 

of bare metal vs container for both the above inputs is shown. Total execution time is reported for the 

entire code (PWSCF) and for the Fastest Fourier Transform in the West (fftw), that is one of the most 

time-consuming parts of the code. The calculations were repeated 5 times and then averaged on the 

set of data. In these simulations, the Intel OmniPath interconnection networks among the compute 

nodes has been used. As it can be noted, the use of container doesn’t introduce significant overhead, 

since the total execution time of bare metal and container runs are about the same, up to 480 cores 

(10 Sky Lake compute nodes).  
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Figure 7.3: Total execution time of the simulation (PWSCF) and Fastest Fourier Transform in the West (fftw) are 

graphed for a system of 24 zirconium and silicon atoms run up to 10 MARCONI Sky Lake nodes. Both in the 

container and bare-metal execution, QE code is compiled using Intel MPI compiler. 

 

 

 

Figure 7.4: Total execution time of the simulation (PWSCF) and Fastest Fourier Transform in the West (fftw) are 

graphed for a system of 108 zirconium and silicon atoms run up to 10 MARCONI Sky Lake nodes. Both in the 

container and bare-metal execution, QE code is compiled using Intel MPI compiler. 

 

Test case 2 

In this second test, we analyse the performance of Quantum Espresso compiled with Open MPI.  

Both in bare metal and in container, any hardware specific flag has been used at code compilation 

time, in order to improve portability of the container.  



D12.6 – Benchmarking results   

[HPC-Europa3 – GA # 730897] 46 

 

The input chosen was a 24 Zirconium and Silicon atoms, with a K-point mesh of 6 x 19 x 13, pure 

MPI. In the singularity container built, the OFED driver for the Infiniband Network has been installed, 

together with the application. 

The performance comparison is shown in the graph below Fig. 7.5. Once again the total execution 

time is reported for the entire code (PWSCF) and for the Fastest Fourier Transform in the West (fftw), 

any calculation was averaged over 5 trials, run on 1, 2, 3 and 4 MARCONI Sky Lake nodes.  

The overhead introduced using containerized Open MPI libraries is negligible, since the total 

execution time of bare metal and container runs are comparable.  

Comparing such results with those in Figure 7.3 (same QE input) is clear that QE compiled with Intel 

MPI are about 5 times faster than compiled with Open MPI. This is widely known from literature and 

is not affected by the containerization procedure.  

The container used for this test is portable. There are not used hardware depend flags, libraries or 

licenced software.  

 

 
 

Figure 7.5: Total execution time of the simulation (PWSCF) and Fastest Fourier Transform in the West 

(fftw) are graphed for a system of 24 zirconium and silicon atoms run up to 4 MARCONI Sky Lake 

nodes. Both in the container and bare-metal execution, QE code is compiled using Open MPI compiler. 
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8. HLRS Benchmarks 

HLRS operates a supercomputing system Hazel Hen (Cray XC-40) [40], which is used by its 

academic (German and EU) and industry customers (e.g. Porsche, Daimler, etc.) The system is used 

for production runs and is therefore quite restricted in terms of access and usage in order to guarantee 

high security and other policies. Therefore, the HPC-Europa3 virtualization benchmarks were 

performed on a separate test system, called EXCESS (installed in the frame of a homonymic project). 

The system consists of 6 nodes (front- and back-ends as well as 4 worker nodes) with a similar 

architecture as Hazel. 

The nodes hardware has the following characteristics: 

• node01: 2 * Intel Xeon 5-2693-v2 (Ivy-Bridge) CPU, with 10 cores each, 32 GB DDR3, IB-

FDR,  

• node02: same as node01 + NVIVDIA-K40 GPU 

• node03: 2 * Intel Xeon 5-2680-v3 (Haswell), with 12 cores each, 128 GB SDRAM-DDR4 

• node04: Intel KNL Xeon Phi 7210, 64 cores, 94GB DDR4, NVML Intel PCI SSD 

The nodes are interconnected with Infiniband FDR 56Gb/s network cards with the following transport 

mechanisms supported: 

• Open UCX 

• OpenFabrics Verbs 

• Shared memory/copy in+copy out 

• Shared memory/Linux CMA 

• TCP over IB 

The system software of the nodes is served by: 

• Nodes 01,04: Scientific Linux 6 

• Nodes 02,03: CentOS v. 7.6.1810 

 

For the evaluation, we used nodes 01 and 02 to cover a possibly broad CPU configuration. 

8.1.  Applications and benchmark scenarios 

HLRS is mainly specialized on engineering applications. Approximately a half of all applications 

running on HLRS resources are served by the CFD (Computational Fluid Dynamics) simulations. 

Physics applications is the second largest application domain of HLRS (roughly 1/3 of all 

applications). Due to numerical schema relying on fine-grain time discretization, the major 

requirement on the infrastructure, as imposed by the majority of the applications, is the high-speed 

network interconnect. The other requirements include availability of vectorization (e.g. AVX2), low 

I/O latencies, fast memory bandwidth etc. 

For the WP12 benchmarking, a set of the HLRS applications and benchmarks was selected, which is 

representative for the major workloads running on the HLRS systems. By the way, a similar 

applications set is used for the procurement activities, whenever a new HPC system shell come in 

place. The applications set includes: 

• Simple communication benchmark (a Ping-Pong test for network latency and bandwidth) 

• Universal CFD toolset (OpenFOAM) 

• Optimized CFD toolset (Palabos) 
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• Highly-optimized Multi-Physics application (PACE-3D) 

• Data Analytics applications (Word Count and Semantic Spaces) 

 Below we give a brief description of the applications and benchmarked cases. 

8.1.1. Communication benchmark 

This is a simple test that aims to measure the time needed to transfer data between the distributed 

compute nodes via their network interconnect. The test allows to evaluate the network s bandwidth 

and latencies. Despite being very simple in terms of functionality, the test gives important insights 

into the functionality of the nodes interconnect. In this test, a message of the fixed or also varying 

size is passed between each pair of CPU cores of the interconnected nodes. The test allows to check 

not only the network characteristics, but also evaluate the ability of the communication layer (e.g. of 

the MPI library implementation) to use all special hardware features to maximize data transfer rates. 

The HLRS version of the Ping-Pong test is developed in C language. 

8.1.2. OPENFOAM 

OpenFOAM [41] is probably the most wide-spread software package implementing CFD (but also 

chemical, solid mechanics, electromagnetic) simulations, which follows the classical CFD approach 

(Navier-Stokes method). OpenFOAM is a big library of open-source numerical solvers for CFD case 

studies. A number of useful utilities, e.g. for mesh creation, post-processing and others are provided 

as a part of the OpenFOAM package as well. For our evaluation, an application investigating 

aerodynamic properties of the airflow through the object of a complex geometry (motorbike) was 

selected (8.1). This sort of simulation is a typical CFD analysis task and also used during the training 

courses offered by HLRS and PRACE. The application included steps of mesh generation for the 

obstacle geometry, domain decomposition, and numerical solution (limited to initial 100 steps). 

 

 

Figure 8.1: OpenFOAM evaluation case: CFD simulation of airflow through a complex geometry OpenFOAM is 

implemented in C++, uses MPI parallelisation and exposes a network-bound performance pattern. 
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8.1.3. PALABOS 

Palabos [42] is another CFD simulation package, developed by University of Geneva. It specifically 

targets the lattice Boltzmann method (LBM) for analysis of incompressible fluid problems – a wide-

spread modern numerical method that simulates the flow on a lattice with streaming and collision 

(relaxation) processes, instead of directly solving the Navier-Stokes equations. LBM has a limitation 

of having application in the low-Mach number flow regime. 

Palabos offers a rich-functional framework for development of CFD simulation applications with 

LBM. Unlike the previously presented OpenFOAM, which focuses more on the universality and 

neglects some aspects of the performance tailoring, Palabos offers much more optimization options, 

which however requires more coding efforts from the programmer. Palabos is used by many HLRS 

customers, including the industrial ones (like Porsche).  

The containers evaluation was performed in a similar fashion as for the above-described OpenFOAM, 

but for a more complex geometry (a car profile, Figure 8.2), in order to evaluate the offered 

optimization features of the HPC hardware. 

 

 

Figure 8.2: Palabos evaluation case: CFD simulation of airflow through a vehicle profile 

 

Palabos is implemented in C++, uses MPI parallelisation and exposes a network- and IO-bound 

performance pattern. 

8.1.4. PACE-3D 

PACE-3D is a multi-physics phase-field application developed by Karlsruhe Institute of Technology 

(KIT). It is MPI-parallel and reaches performance in PFLOPs range. In order to ensure high resource 

utilization, the application has been optimized to use the majority of features of the modern CPUs 

(like SIMD-vectorization, e.g. with AVX2) and networks (like RDMA). 

The PACE-3D application, which was selected for our evaluation, performs analysis of 

microstructural material properties during a sintering process – turning loose powders into dense 

materials, such as can be found in the natural formation of glaciers. 

PACE-3D is implemented in C, uses MPI parallelisation and is strongly memory-bound. 
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Figure 8.3: PACE-3D evaluation case: Simulation of microstructural material properties during a sintering process 

8.1.5. Data analytics workloads 

Big Data and Data Analytics have become new HPC application domains since the last 3-4 years. 

Typical Big Data workloads perform analytics operations that are less computation-intensive than the 

typical HPC workloads but still require large-scale executions.  

For the evaluation, we selected 2 challenging benchmarks – Word Count and Semantic Spaces. Word 

Count is a typical benchmark that is supplied with Hadoop [43] – the most famous implementation 

of the MapReduce programming model. Word Count takes as input a large text file and calculates the 

occurrence number of every word that appears in this text, e.g. for the MPI-3.0 standard specification: 

 “communication”: 1224 

 “collective”: 308 

For this, a Map is created on every process (running on a parallel system) that includes a word and a 

number of its occurrences in the text chunk, assigned to this process. In the Reduce phase, the maps 

of all processes are shuffled and the resulting “global” map is produced.  

The 2nd benchmark scenario – Semantic Spaces – comes from the Semantic Web application domain, 

which is known by its challenges in terms of Big Data processing (large size of data, high dynamics 

of data and thus many computations needed). Semantic Space technology was selected as one of the 

most computation-intensive application areas of Semantic Web and also because of the availability 

of MPI-parallel code (Airhead, see below). The code has won a parallelisation challenge prise of 

Krakow University of Technology in 2011. 

Semantic Spaces aims to statistically derive the context of the textual information contained in the 

large amount of textual data. Similarly to Word Count, Semantic Spaces analyses the content of large 

text files, but with a much more challenging goal – to identify the major concepts (i.e. semantic 

spaces) and analyse (i.e. index) relations between them. In our evaluation, the indexing was 

performed with the Airhead-SS [44] package, which implements an optimized indexing technique 

called Random Indexing. With random indexing, it is possible to identify that, for example, the phrase 



D12.6 – Benchmarking results   

[HPC-Europa3 – GA # 730897] 51 

“collective communication” means pretty much the same as “collective information exchange” but 

very much different from “collective mind”, despite of having the word “collective” in both phrases. 

Both Word Count and Airhead-SS were implemented in Java and parallelized with MPI (OpenMPI 

Java bindings were used). Word Count is typically I/O bound, and Airhead-SS is memory-bound. 

8.1.6. Container environment setup 

For the evaluation we were considering 3 major containerization technologies: Docker, Shifter, and 

Singularity. Due to the HLRS administrative restrictions, Docker installation was inappropriate due 

to the required full, unrestricted root access on production systems – this is both to prevent users from 

accidentally performing actions that may cause issues in production, and is also likely necessarily to 

satisfy audit requirements where user actions must be audited and access rights must be enforced.   

Shifter and Singularity provide same functionalities as Docker, without any of the drawbacks listed 

above. Using a completely different implementation, they don't require any privilege to run 

containers, and allow direct interaction with existing Docker containers. When choosing between 

Shifter and Singularity, we relied on the analysis performed by the deliverable D12.3 [25]. According 

to it, Singularity offers a similar functionality as Shifter but offers more advantages in terms of 

support and extendibility on the production system. Therefore, Singularity was finally selected as the 

basis containerization technology for the HLRS evaluations. 

The application container was set up on the basis of a Docker container that is available for 

OpenFOAM [45] with the characteristics listed in Table 8.1.  The initial container distribution already 

included the most common tools for setting up and running parallel applications. However, some 

tailoring was necessary to be undertaken before taking the container into production (also listed in 

Table 8.1). 

Table 8.1: Properties of basis and final container 

Characteristic Basis Container 
Production 

Container 

OS CentOS 7.3 

Compiler GNU GNU 9.2.0 

MPI  OpenMPI 4.0.1 

Transport layer TCP TCP, Infiniband 

 

Most notably, the support for a high-throughput interconnect (in our case – Infiniband) had to be 

provided, as the network latency and bandwidth are the major limitation factors for performance and 

scalability of most of the HLRS applications, including the ones, evaluated in this deliverable. The 

standard Infiniband drivers had to be installed into the container, such as MXM, HCALL and FCA. 

The basic MPI library had also been updated in order to enable Infiniband communication and also 

to support Java. A support for Singularity was added as well. 

The evaluated application benchmarks have been installed into the container in order to enable the 

execution without binding any external directory (however, the evaluated Singularity allowed this 

with very low configuration effort). 
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8.1.7. Benchmarking procedure and results 

The goal of benchmarking was to find out how the functional and non-functional properties of the 

“bare-metal” applications change after porting them into the “container environment”.  

The benchmarking methodology that we were following for this was quite straightforward. Firstly, 

for each of the benchmarked applications, a functional validation was done. The goal of the functional 

tests was to ensure that the containerized applications can be successfully started and completed and 

that the produced results were valid. In order to ensure the equality of the comparison, the bare-metal 

tests were performed in the similar system software environment (compiler, MPI library, etc.) as 

installed in the container with some minimal deviations due to different OS and low-level system 

software in the container and on the host. 

In the second phase, the non-functional execution properties (most notably – the total execution time) 

were evaluated. For this, all benchmarks were executed on the Infiniband-interconnected nodes 1 and 

2 that were available in the privileged mode (no other jobs that might have disturbed the execution 

were running at the moment of benchmarks execution). The execution time was measured with the 

help of “time” Linux command (the “real time” was measured).  

All tests were executed 20 and the average values of the execution time were taken. The use of 

Infiniband was enforced by corresponding directives of the MPI runtime environment. The typical 

execution command (for n=4 MPI processes on m=2 nodes, as an example) for the bare-metal tests 

was as follows: 

 
 mpirun --prefix /opt/centos7/mpi/openmpi/4.0.1-gnu-9.2.0-ib \ 

     -np 4 --host node01,node02  \ 

     --mca btl_openib_allow_ib true \      

 /home/mybinary 

 

and for the container: 

mpirun --prefix /opt/centos7/mpi/openmpi/4.0.1-gnu-9.2.0-ib\ 

     -np 4 --host node01,node02 \ 

/opt/singularity/3.1.1/bin/singularity exec \ 

/nas_home/hpcochep/Singularity/Containers/openfoam_v19.06_writ

able /home/mybinary 

 

Communication benchmark 

In the test, 1 MPI process was launched per core, meaning that for both used nodes, a total of 40 MPI 

processes were running. Ranks 0-9 (node01) and 20-29 (node02) were running on the 1st CPU socket, 

and ranks 10-19 (node01) and 30-39 (node02) on the 2nd CPU socket. 

The functional results of the tests were the values of i) latencies (Figure 8/4) and ii) bandwidth for 

the inter-node communication (Figure 8.5). The communication was performed between every core 

of both CPUs (20 cores per CPU were available, so that each core had to perform 39 communication 

operations). All tests have passed successfully. 

From the analysis of the communication time properties, it can be seen that the containerized 

application shows a somewhat larger dispersion for shared-memory communication (i.e. 

communication between the cores of the same CPU socket), which might be caused by the way of 
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thread handling by the container OS. But the internode communication (through Infiniband) seems 

to be not impacted by any changes. 

As a consequence, the applications that rely heavily on OpenMP might experience some performance 

gains or penalties, depending on their communication pattern. 

 

 
a)                                                                                          b) 

Figure 8.4: Latencies for 10000 exchanges of a 4-byte message between all cores in a) bare-metal, b) container 

configurations 

 

 
a)                                                                                          b) 

Figure 8.5: Bandwidth for 50 exchanges of a 1-Megabyte message between all cores in a) bare-metal, b) container 

configurations 

OpenFOAM 

In order to evaluate the impact of the above-described differences in shared memory communication 

between the bare-metal and container configuration, OpenFOAM was compiled and run with the 

instructions to rely as much as possible on the OpenMP communication (inside a node). The 

configuration with 1, 2, and 4 MPI processes (total number on all 2 used nodes) were evaluated with 

the maximum possible amount of OpenMP threads per node. 

In such a configuration, the effect of running the application in a container environment was positive:  

OpenFOAM was able to gain up to 4% of performance improvement when running in a 
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container environment with the presumable “better fitting” OS and system software. Figure 8.6 

gives more details on the OpenFOAM performance. 

 

 

Figure 8.6: OpenFOAM performance in a) bare-metal, b) container configurations 

Palabos 

Palabos exploits a more computationally-heavy performance pattern and therefore benefits less from 

the intra-node parallelisation than the above-discussed OpenFOAM. However, even for Palabos, the 

OpenMP realization in the container offered slightly better performance for the 10 second (physical 

time) simulated use case (Figure 8.7) for the case of the MPI processes. For the affinity-agnostic 

OpenMP threads with possible context changes between the threads (which was presumably the case 

for the OpenMP-based parallelization), the performance might slightly degrade, which was also 

illustrated by the previous communication benchmark. 

 

 

Figure 8.7: Palabos single-node performance in a) bare-metal, b) container configurations 

For the parts which rely on the node-interconnection, the containerized version has shown a similar 

performance with a slight trend to a slow-down when performing the communication over Infiniband 
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(Figure 8.8), with an expectation of getting neglectable for the larger parallel configurations (with 

more nodes and MPI processes involved). 

 

 

Figure 8.8: Palabos 2-nodes performance in a) bare-metal, b) container configurations 

 

The trend is also clearly visible from the speed-up chart of the MPI-parallel implementation (where 

the base case is served by a single MPI process running on 1 core, Figure 8.9), as soon as the 

communication shifts from the shared-memory parallelization to the inter-node one (over Infiniband). 

 

Figure 8.9: Speed-up of MPI-parallel Palabos implementation in a) bare-metal, b) container configurations 

 

PACE-3D 

PACE-3D is a highly optimized solver for the sintering process to efficiently solve large domain sizes 

with long integration times. The high efficiency is achieved by exploiting parallelization at both 
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levels: intra-node (with vectorization intrinsic) and inter-node (with the efficient MPI communication 

pattern). Only-MPI deployment configurations were tested (there is no OpenMP implementation 

available). 

The application was tested on 2 domain sizes: 640×480×640 and 1920×6720×1280 voxel cells, 

representing a real physical problem of one of the KIT (application developer) customers. We had to 

stick to these two pre-defined geometries as their tailoring was not easily possible. For this reason, 

only strong scaling tests were performed (weak scaling had to be omitted due to the case restrictions) 

and the efficiency (speed-up divided by the number of all used cores) was measured with the same 

result for both domain sizes – no performance impact for highly-optimized codes have been 

observed. 

 

Figure 8.10: PACE-3D strong scaling efficiency in a) bare-metal, b) container configurations for smaller and larger 

test domains 

In order to evaluate the impact of performance optimization on the containerized application 

execution, we turned off all optimization features (vectorization, process and frequency pinning, etc.) 

and run 60 tests with the goal to measure the dispersion of the average execution time (on 2 nodes) 

between the containerized and the native application. The performance was measured in LUPS 

(Lattice Updates Per Second) units. The results that we obtained were quite prominent – the 

dispersion for both small and big domains has slightly decreased (Figure 8.11)  and was inappreciably 

higher for the bare metal version. The average performance value for the big domain didn’t change 

after moving to the container-based execution.  

 
a)                                                                                          b) 

Figure 8.11: PACE-3D performance dispersion for a) small and b) big domains 
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Data Analytics 

Unlike the previously presented PACE-3D application, both benchmarked data analytics applications 

use the compute infrastructure less efficiently. This is partly due to the specific of their workloads 

(which mainly perform “simple” operations like sorting or filtering) but also partly caused by their 

implementation (need of Java VM, “fat” object model, etc.). 

The Word Count benchmark was performed on the entire MPI-3.0 standard, converted into the text. 

The total execution time was measured for single- and 2-node configurations without any essential 

difference in the final performance between the containerized and the native realizations (Figure 

8.13). 

 

Figure 8.12: Word Count strong scaling efficiency in a) bare-metal, b) container configurations 

 

Similar results were obtained for the Airhead Semantic Spaces applications, which showed a bit better 

efficiency than Word Count but still no significant difference between the native and containerized 

versions (Figure 8.13). 

 

Figure 8.13: Airhead-SS strong scaling efficiency in a) bare-metal, b) container configurations 
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8.2.  Summary 

Containers prove being a good option for releasing complete application solutions for engineering 

domain. Singularity is efficient but at the same time easily configurable tool for providing containers 

to the end-users. 

Engineering applications seem to be quite sensitive against their execution environment, so that the 

performance might slightly differ even for different versions of the same OS, unless the application 

is extremely well optimized, which is the case for PACE-3D benchmark, or neglects the performance 

factor to attain a higher user-friendliness and ease the adoption by the programmers, as it is the case 

for the benchmarked Java-based Data Analytics applications. For the “mainstream” applications, 

containerization might offer advantages in terms of performance and efficiency. 

A somewhat negative aspect of the container technology is the size of the container. Even if the Linux 

core is excluded from them, the rest of the systems software and other middleware is relatively 

“heavy”. For example, even for the basic OpenFOAM container, 1.65 GB disk space is needed. If the 

“write” functionality is enabled, the container needs to be replicated by the users, which can lead to 

the exceeding disk space very quickly. The standard module environment is many orders of 

magnitude more efficient in terms of the required disk storage. 

At any case, container technologies have proved their general usefulness to the core HLRS expertise 

area – engineering applications. The offered advantages in terms of the application execution 

environment customization were highly supported. HLRS interviewed five of its major customers 

and all indicated their interest in using Singularity in the future. The current HLRS’s flagship system 

Hazel Han is in the process of migration to the newer AMD technology (new supercomputer Hawk). 

Based on the positive evaluation results of Singularity, this middleware was enrolled for the 

installation on the new system (to come to production in approximately April-May 2020) and will be 

provided for all users of HLRS. 
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9. CNRS Benchmarks 

9.1.  DIRAC and RAMP 

We will use two benchmarks which will allow us to check the performance improvement or 

degradation regarding the usage of the CPU, GPU, memory and I/O, when running the benchmark 

code within Singularity container (compared to running it in the same bare machine). In this study, 

we will only focus on Singularity as it is the most used container solution for scientific workload. It 

is also the one we provide to our users, especially for running on the GPU farm. 

The first benchmark, so called the Dirac benchmark [46], is a simple and fast benchmarking tool 

which aims to give a good estimation of the CPU resources available on a node. It allows to 

benchmark from a single job slot to the whole node. It is used in WLCG  [47] by the LHCb [48] 

experiment to quickly benchmark opportunistic resources. That tool returns a number which gives an 

idea of the CPU power of the machine (the greater is the number, the more powerful is the CPU of 

the machine). 

The second benchmark [49]  we will use is a home-made tool based on a toy deep learning challenge 

organised by French colleagues using the RAMP platform [50] for a school of computing in April 

2018. The model implemented is based on a convolutional network called UNet [51]. The whole 

benchmark is written using the Keras library with a Tensorflow backend. The dataset (2 Gb) is divided 

into 12 000 images for the training, 4 000 for the validation (during training) and 4 000 images for 

the final evaluation of the model. This benchmark is intended to be run on GPU, but could also be 

run on CPU (if there is no GPU on the node). The main metric is the execution time, and the 

application is memory-, IO- and GPU-bound. 

For our benchmarks, we will compare the execution time, but also the usage of the memory and the 

I/O as we will be able to get these numbers from the report from our batch system, which is Univa 

Grid Engine. It is worth noticing that whatever the batch system used, it should not impact at all the 

benchmark results.  

9.1.1. Benchmarking environment 

We have run the two benchmarks on fully dedicated worker nodes to avoid any interference with 

others jobs. We had three dedicated worker nodes: a "common" one with a CPU only (32 cores, 100 

GB), one with a NVidia K80 GPU (16 cores, 130 GB), and the last one with a NVidia V100 GPU (20 

cores, 190 GB). 

For both benchmarks, we prepared simple scripts to launch the benchmark code on the dedicated 

worker nodes through the batch system. We also used the exact same Singularity image for DIRAC 

and RAMP, which was the one prepared for the RAMP (GPU benchmark). The idea was to have the 

same environment as much as possible, so we had mostly only the name of the worker node and the 

benchmark code to update before each new test. 

We have also done test with four Singularity versions for the Singularity runtime: 2.6.1, 3.0.3, 3.1.1 

and 3.3.0. We chose those versions for the following reasons: 

• 2.6: last supported version of Singularity 2.X; not compatible with Singularity 3.X but 

still widely used. 
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• 3.0.3 and 3.1.1: versions of Singularity 3.X that were in production at the CC IN2P3 

at the time when we did that study. 

• 3.3.0: last stable version of Singularity at the time when we did that study, so we 

wanted to try it and check if performances were improved. 

The results obtained when running in the Singularity container were compared to the reference which 

is running the benchmark code in the exact same worker node (without using a Singularity container). 

Here is the software environment used: 

● the worker nodes are running CentOS Linux release 7.6.1810 (Core) 

● for the GPU worker nodes, we used the following libraries versions: CUDA 9.2.148 and 

CUDnn 7.3.1.20 

The Singularity image was built from a CentOS 7 docker image (the base Linux system was of the 

same version as above after a proper update), and we installed the required CUDA and CUDnn 

libraries inside. We used Singularity version 3.0.3 to build the image. The Singularity image’s size is 

4GB. 

We compiled TensorFlow 1.11 against these libraries and built a Python module (wheel). 

9.2.  More details about running RAMP (GPU benchmark) 

In this case, here is the two ways to run the benchmark: bare metal worker node (which will stand as 

the reference) and within a container instantiated in the same worker node. 

In a bare metal worker node 

We setup a conda environment (Python 3.6) in which we installed Keras and the compiled 

TensorFlow wheel module. This installation is on a shared filesystem and thus visible from all the 

worker nodes. The CUDA and CUDnn libraries were the ones installed on the worker nodes. 

For the reference, we then only have to setup the conda environment and the CUDA libraries path 

and then run the RAMP benchmark. It returns a time execution, and thanks to our batch system 

reporting, we could also gather memory and I/O consumption. These will be the three metrics we will 

check with that benchmark. 

In a Singularity container 

In this case, we instantiate a Singularity container, in which we bind-mount the shared filesystem. 

We set up the same conda environment as above but the CUDA libraries installed in the container. 

Then, in this case, the benchmark runs the TensorFlow code on the GPU by going through the 

container as it will use the CUDA and CUDnn libraries installed inside. We will then mostly check 

whether adding the container layer increases the time execution (this is the main purpose of this 

benchmark) by degrading the performances. 

Two different setups have been studied. In the first one, we read the Singularity image from a shared 

filesystem, and in the second we will read it directly from the worker node memory. In the first case, 

we will then also take into account possible network latency in the overall overhead. 

Moreover, for both cases, the dataset required to run the RAMP / GPU benchmark was stored in the 

memory of the worker node (i.e. in /dev/shm). 
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9.2.1. Results of RAMP (GPU benchmark) 

As discussed above, in most of the following plots, the reference value for a given metrics is obtained 

by running the benchmark code in the bare metal, dedicated worker node (to avoid any interference 

with other jobs, or any tasks running on the machine). 

The comparison will then be done against results obtained when running the benchmark code in a 

Singularity container, considering four possible Singularity versions for the Singularity runtime (see 

above). 

The Singularity image will be the same for all tests and benchmarks and has been built with 

Singularity 3.0.3. 

Wallclock and CPU/GPU time 

Environment 1: NVidia V100 GPU worker node with the Singularity image in memory 

The wallclock time is the whole time the job has spent in the machine. The CPU/GPU time is the 

time the CPU/GPU is effectively being used. The latter is usually less than the wallclock time as the 

wallclock time will also include time for setting up the prerequisites for the jobs and potential access 

time to data while the job is running. 

The CPU time is returned by the benchmark. Hence, we can get the overall overhead with the 

following formula: 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (𝑡)  = 𝑤𝑎𝑙𝑙𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 (𝑡)  −  𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 (𝑡) 

Instantiating a Singularity container can require some time (to read the image, then to instantiate the 

container itself). Following that, we can check below the potential overhead of instantiating a 

Singularity container: 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦  (𝑡)  = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (𝑡)  −  𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑏𝑎𝑟𝑒𝑚𝑒𝑡𝑎𝑙  (𝑡) 

Figure 9.1 shows the resulting overhead (in seconds) for the various Singularity runtime versions 

used compared to the reference. Instantiating a container adds a slight overhead, 1 to 2 seconds, to 

the job set up time. In that figure, we ran 130 tests on a NVidia V100 GPU (26 tests for each 

Singularity version, and the same number without Singularity. The Singularity image and the data 

required by the benchmark have been copied directly to the memory (RAM) of the worker node to 

minimize the I/O to access them (they were writing to /dev/shm). 
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Figure 9.1: Overhead observed with various Singularity runtime versions for the RAMP / GPU benchmark. The 

data and the Singularity image were stored in the RAM. 

 

The errors reported on Figure 9.1 (and the Figures below when reported) are the statistical errors only, 

and computed as follows: 

𝜀 (𝑚𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟)  =  𝜎 / √𝑛, 

where 𝜎 is the standard deviation of the distribution of the measurements and n the number of 

measurements. This can only be computed if the distribution of the measurements follows a Gaussian 

distribution, which should be the case here. In all tests, n, the number of measurements (tests) is 26. 

According to Figure 9.1, there is a small overhead running inside a container, of about 1 to 2 seconds, 

coming from the required time to instantiate and set up the container. In order to have a better idea of 

it, one can compute the overhead as an increase, in percent, of the overhead reference value, just as 

follow: 



D12.6 – Benchmarking results   

[HPC-Europa3 – GA # 730897] 63 

 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (%)  =  (𝑆𝑖𝑛𝑔 −  𝑁𝑜𝑛𝑒 ) / 𝑁𝑜𝑛𝑒 , 

where Sing represents the overhead value obtained for a given Singularity version and None when 

running the benchmark code on bare metal machine. 

According to Figure 9.2, the overhead for the various Singularity runtime versions is about 10% or 

so for Singularity 2.6.1, then increasing to about 12% for Singularity 3.0.3, then decreasing to about 

5% for version 3.3.0, which shows that the latest version was well improved.  

The overhead discussed above mainly comes from the configuration requested for the container. For 

instance, in our case, in order to see the GPU within the container we have to add the –nv option. 

More complex the configuration of the container, longer it will take to be instantiated. This is 

something we will confirm with the use of the Dirac benchmark (for which, even though we are using 

the same container, the configuration is much more simple). 

 

Figure 9.2: Overhead in percent for the various Singularity runtime versions for the RAMP / GPU benchmark. 

The data and the Singularity image were stored in the RAM. 
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Environment 2: NVidia V100 GPU worker node with the Singularity image in a shared 

filesystem 

We have redone the same measurements, but with the Singularity image was stored on a shared 

filesystem. In that new configuration, we can have an idea of the overhead coming from reading the 

Singularity image in order to instantiate the container, as memory access is much faster than from the 

shared filesystem. 

Figure 9.3 shows the overhead observed, in seconds (left) and in percent (right), just as discussed 

before in Figure 9.1 and Figure 9.2. Comparing Figure 9.3 to Figure 9.1, one can note a slight 0.5s 

increase for reading the required data from the image to instantiate the container. This is an interesting 

result, as it shows that even a shared filesystem (without providing excellent I/O) can be used as a 

Singularity image repository. 

 

 

Figure 9.3: Total overhead (on the left) and overhead in percentage (on the right) observed for the various 

Singularity runtime versions for the RAMP / GPU benchmark. The Singularity image was here stored on a shared 

filesystem. 

 

Comparing Figure 9.2 and 9.3, one can notice the exact same pattern evolution of the increase, when 

going from Singularity 2.6.1 to 3.3.0, with the latest version being quite optimized compared to the 

others. This pattern will also be there when using another kind of worker node (Figure 9.4). 

Environment 3: NVidia K80 GPU worker node with the Singularity image in a shared 

filesystem 

We have redone all the previous tests on a NVidia K80 GPU. Figure 9.4 show the results obtained 

when storing the Singularity image in the shared filesystem. We of course do not expect new results, 

but they have to be compatible with what have been seen previously, which is the case. 
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Figure 9.4: Overhead observed for the various Singularity runtime versions for the GPU benchmark. The data 

and the Singularity image were stored in a shared filesystem. On the left: total overhead, including bare-metal 

(blue bar) In the middle: singularity overhead in seconds. On the right: singularity overhead in percentage 

 

This overhead difference has to be set in context: it represents a difference of about 15s for the total 

duration of the job, which is about 570s. This difference is hidden by the error margin of the total 

duration time average and is actually not noticeable, as seen in the next section. 

Time execution 

Environment 1: NVidia V100 GPU worker node with the Singularity image in the memory 

The next figure show the total duration time average for each version of Singularity. The figure on 

the right shows the difference (in percent) for each version compared to bare metal. As we can see, 

the difference is in the error margin and not significant. Hence, we can conclude than even if 

Singularity add an overhead, the time added is not significative enough to impact the total job duration 

time. 
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Figure 9.5: Total time of the job (overhead and calculation time) (left) and difference in percent between the time 

when using different version of Singularity compared to bare metal (right) 

 

Figure 9.5 show the time execution of the benchmark (CPU/GPU time).  As one can see, running 

inside a container does not add any overhead and all the measurement are compatible within the 

statistical errors. One can then conclude that once instantiated, the container does add any overhead 

on the performances of the task. 

So we have shown that Singularity adds a slight overhead, but this overhead is to small to impact in 

a significant way the total time duration. The second benchmark will be used to check if the overhead 

is depedant of the size of the job. 

Memory usage 

Back to environment 1, we will now check the memory usage. Our batch system allocates memory 

for each job and then returns how much percent of that memory was actually used by the job. Hence, 

we can check if using Singularity change the total memory consumption. 

Figure 9.6 shows that the average memory utilization is almost always the same. It shows that using 

Singularity does not impact how the job interact with the worker node to use the RAM. 
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Figure 9.6: Memory usage (percent of the allocated memory for the job) of the benchmark depending on the 

various Singularity runtime used. 

 

9.3.  The Dirac benchmark 

The previous benchmark was more dedicated on the following metrics: time execution, memory and 

I/O usage. We could then check whether using Singularity adds some overhead on these metrics. 

The Dirac benchmark, as discussed previously [46], [47], [48] is more focused on checking the CPU 

power of a machine, and returns a number which represents it: the greater the number is, the more 

powerful the worker node is. The benchmark gives a fast approximation of the HS06 benchmark, 

which is the reference benchmark in High Energy Physics [52]. It does not have any unit, but serves 

as an unit to compare the CPU power of the worker nodes. 
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Figure 9.7 shows the results of running the Dirac benchmark in various setups: without Singularity, 

and with 2 versions, 2.6.1 and 3.3.0.  

This time only two versions of Singularity were tested: 2.6 (as the last supported 2.X version) and 

3.3.0 (as the latest released and the most performant version of Singularity 3.X at the time of the test). 

Testing more versions would not have given more information than what the RAMP / GPU 

benchmark returned. 

We can see a small degradation of the performances with Singularity 2.6.1, but no significant one 

with Singularity 3.3.0. This test can be compared to Figure 9.3 which shows the execution time of 

the previous benchmark (so the CPU/GPU time). On Figure 9.3, all measurements were compatible 

within the statistical errors. However, the mean value for Singularity 2.6.1 was a bit greater than for 

‘none’ and Singularity 3.3.0, which could indeed indicate that the performances for that version were 

a bit degraded. More statistics are required on Figure 9.7 to reach a better conclusion, as the statistical 

errors remains large enough to overlap. However, based on the Dirac benchmark, the difference 

between 2.6.1 and 3.3.0 remains low, 12.1 compared to 12.3, which in any case seems to indicate a 

quite small degradation of the performances. 

 

Figure 9.7: Benchmarking of the CPU power of a worker node using the Dirac benchmark, without and with 

Singularity. 
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9.4.  Summary 

We used two benchmarks to measure possible degradation of using a Singularity container towards 

several metrics: CPU time, memory, I/O. We also compare several Singularity runtime versions to 

each other, and to the reference, which is running without Singularity. 

We observed a small overhead at the start of the job, due to reading the image and setting up the 

container. In our case the overhead was 1 to 2 seconds, and amounts to about 10% of the time required 

to set up the benchmark. We moved the Singularity image from the memory of the worker node to a 

shared filesystem (NAS) and only observe less than 1 s extra overhead, which seems to indicate that 

reading the image does not account much in the overall overhead of using Singularity. 

We compared several Singularity runtime versions, and mostly noticed a quite significant 

improvement from 2.6.1 to 3.3.0.  This overhead was noticeable only for the bigger jobs; for a smaller, 

simpler one there was no perceptible overhead. 

The Dirac benchmark also seems to indicate a slight performance degradation when using Singularity 

2.6.1, but it seems to disappear with 3.3.0. Note that the difference between the numbers obtained 

from the benchmark for these two versions is small, so that the degradation should also be small, and 

even negligible. This appears to be compatible with the time execution checks done with the RAMP 

benchmark, which did not exhibit anything significant.  Nothing has been observed on the memory 

usage or on the I/O. 
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10. Conclusions 

In this deliverable, the performance of selected applications was examined by comparing bare metal 

versus containerized one. The applications’ selection was based on popularity in HPC centers and the 

factors that affect their performance. Docker, Singularity, Shifter containers were also compared. In 

all cases, Singularity was tested. On some sites, where Docker and/or Shifter is available, they also 

were tested. 

There are two main ways to use of containers. A fully portable container that runs on all types of 

hardware, at least of the same architecture (x86), or container as a portable development environment 

that usually needs to be adjusted and recompile the applications inside container taking into account 

specific systems characteristics. 

A fully portable container with precompiled application suffers from performance degradation. It is 

explored in detail with GROMACS and Tensorflow applications. Compiling the application using 

high end hardware, minimizes the performance degradation but this makes container not backwards 

portable i.e. runs on older hardware. 

On the other hand, using the container as development environment, compiling the application for 

specific hardware has in general no effect on the performance. In this case, especially with single 

node runs –typically using POSIX threads or OpenMP, containerized applications have the same 

performance than bare metal executions. When more than one node have to be used - this typical 

implies the use of MPI – performance behaviour is more complicated. Usually, HPC machines have 

special network hardware of various types, like Infiniband and Omnipath. These special interconnects 

need the appropriate drivers to be present when MPI is compiled. Except the extra effort to install 

these drivers inside the container image – assuming that they are publicly available, another 

complication arises when one moves for example from Infiniband to Omnipath. The procedure of 

drivers installation and MPI recompilation, should be repeated. In both cases, one has to implement 

the possible configuration changes for these interconnects inside the container. Although this is 

possible, for example for administrators who have the knowledge of hardware and possible additional 

configuration, seems impossible for the application end user. The overhead on the time execution is 

not significant and does not perceptibly impact the total job duration. 
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