Published February 19, 2018 | Version 1.0
Dataset Open

NFFA-EUROPE - SEM Dataset

Description

Dataset of 18,577 SEM images produced at CNR-IOM (Trieste, Italy). Images are classified into 10 categories in a folder structure, which have been used for convolutional neural network training. Results obtained from this dataset have been published in Modarres et al., Scientific Reports volume 7, Article number: 13282 (2017), doi:10.1038/s41598-017-13565-z The dataset is appropriate for the purposes of this study and in general for visual object recognition software research. Any scientific metadata associated to the measure is not present in the images. The dataset is therefore relevant as a whole, being the single images entirely detached from any specific information or scientific detail related to the displayed subject. This work has been done within the NFFA-EUROPE project (www.nffa.eu) and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 654360 NFFA-Europe.

Files

Files (12.1 GB)

Name Size Download all
Checksum: md5:ce5046278910173d1e8e306b0e9a7a1f

PID: http://hdl.handle.net/11304/5181815b-3b7e-43d6-b751-f1fc23dd1f46
700.3 MB Download
Checksum: md5:0211692e2720138370226e5b5b971967

PID: http://hdl.handle.net/11304/6c6e83bc-0c13-4917-bcc2-0d744b816571
83.7 MB Download
Checksum: md5:7cadca65719817ec3f79753436fce23e

PID: http://hdl.handle.net/11304/2cd52a61-3d45-44af-aa4e-327e1a1adc46
198.0 MB Download
Checksum: md5:de7ec1e570382f24c80edd72d190445b

PID: http://hdl.handle.net/11304/54432c35-87dd-407a-9194-794bdc6c419f
3.1 GB Download
Checksum: md5:52a83fe8a66105b5a49b418cfc8c5c6e

PID: http://hdl.handle.net/11304/4e26bb0a-31e7-46e0-98a5-f8efbad29268
2.1 GB Download
Checksum: md5:a7bfb3a83f0e5849a4616ee379df9762

PID: http://hdl.handle.net/11304/43d452ab-6ec8-4c39-8281-6a5ada6af653
2.3 GB Download
Checksum: md5:6a10fa0fef72699e839e68fd6fd3b7d7

PID: http://hdl.handle.net/11304/b5e09058-3a69-4371-bf12-28c8bebf0dc6
2.0 GB Download
Checksum: md5:0ec984f105d030cf0dad29191c470d59

PID: http://hdl.handle.net/11304/674b6f90-c22e-4335-89d3-70e240910057
118.8 MB Download
Checksum: md5:9d2f47069f3bd7926b731472e4be6007

PID: http://hdl.handle.net/11304/f6bcd424-2688-4ccf-b88c-79c425174c0d
855.6 MB Download
Checksum: md5:cb2ad93fb5052513eafe54fcd38bcf8d

PID: http://hdl.handle.net/11304/a31815b7-5954-4b69-ba7d-913431851bea
677.1 MB Download

Additional details

Identifiers

b2rec
0c4df0303b6a41c3bdb17b66bdbdb39b
b2rec
19cc2afd23e34b92b36a1dfd0113a89f